- LAPACKE_dgetrf/ri replaced with cusolverDnDgetrf/rs.

- Solved sign bug in computation of determinant.

Most code is now executed on the device. Some openMP pragmas can be consolidated.
This commit is contained in:
Francois Coppens 2022-09-26 17:02:58 +02:00
parent 5a61ccc6b1
commit 4e7a334b78
2 changed files with 98 additions and 91 deletions

View File

@ -7,7 +7,6 @@
#ifdef HAVE_CUBLAS_OFFLOAD
#include <stdio.h>
#include <omp.h>
#include <cublas_v2.h>
#include <cusolverDn.h>
#include <cusolver_common.h>

View File

@ -1,5 +1,6 @@
#include <math.h>
#include <stdint.h>
#include <stdbool.h>
#include "kernels.h"
#include "debug.h"
@ -30,8 +31,8 @@ uint32_t qmckl_sherman_morrison(
// C = S^{-1} x u_l
for (uint32_t i = 0; i < Dim; i++) {
C[i] = 0.0;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
}
@ -50,16 +51,16 @@ uint32_t qmckl_sherman_morrison(
if (!determinant)
*determinant *= den;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
D[j] = Slater_inv[cui * Lds + j]; // selecting proper column of v_l^T * S_inv
}
// A^{-1} = A^{-1} - C x D / den
for (uint32_t i = 0; i < Dim; i++) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
const double update = C[i] * D[j] * iden;
Slater_inv[i * Lds + j] -= update;
@ -99,8 +100,8 @@ uint32_t qmckl_woodbury_2(const uint64_t vLDS, const uint64_t vDim,
for (uint32_t i = 0; i < Dim; i++) {
C[i * 2] = 0;
C[i * 2 + 1] = 0;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t k = 0; k < Lds; k++) {
C[i * 2] += Slater_inv[i * Lds + k] * Updates[k];
C[i * 2 + 1] += Slater_inv[i * Lds + k] * Updates[Lds + k];
@ -134,8 +135,8 @@ uint32_t qmckl_woodbury_2(const uint64_t vLDS, const uint64_t vDim,
double __attribute__((aligned(8))) tmp[2 * LDS];
double *__restrict r1dim = &(Slater_inv[row1 * Lds]);
double *__restrict r2dim = &(Slater_inv[row2 * Lds]);
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
tmp[j] = Binv[0] * r1dim[j] + Binv[1] * r2dim[j];
tmp[Lds + j] = Binv[2] * r1dim[j] + Binv[3] * r2dim[j];
@ -143,8 +144,8 @@ uint32_t qmckl_woodbury_2(const uint64_t vLDS, const uint64_t vDim,
// Compute (S^T)^{-1} - C * tmp : Dim x Lds
for (uint32_t i = 0; i < Dim; i++) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
Slater_inv[i * Lds + j] -= C[i * 2] * tmp[j];
Slater_inv[i * Lds + j] -= C[i * 2 + 1] * tmp[Lds + j];
@ -185,8 +186,8 @@ uint32_t qmckl_woodbury_3(const uint64_t vLDS, const uint64_t vDim,
C[i * 3] = 0;
C[i * 3 + 1] = 0;
C[i * 3 + 2] = 0;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t k = 0; k < Lds; k++) {
C[i * 3] += Slater_inv[i * Lds + k] * Updates[k];
C[i * 3 + 1] += Slater_inv[i * Lds + k] * Updates[Lds + k];
@ -234,8 +235,8 @@ uint32_t qmckl_woodbury_3(const uint64_t vLDS, const uint64_t vDim,
double *__restrict r1dim = &(Slater_inv[row1 * LDS]);
double *__restrict r2dim = &(Slater_inv[row2 * LDS]);
double *__restrict r3dim = &(Slater_inv[row3 * LDS]);
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
tmp[j] = Binv[0] * r1dim[j] + Binv[1] * r2dim[j] + Binv[2] * r3dim[j];
tmp[Lds + j] = Binv[3] * r1dim[j] + Binv[4] * r2dim[j] + Binv[5] * r3dim[j];
@ -244,8 +245,8 @@ uint32_t qmckl_woodbury_3(const uint64_t vLDS, const uint64_t vDim,
// Compute (S^T)^{-1} - C * tmp : Dim x Lds
for (uint32_t i = 0; i < Dim; i++) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
Slater_inv[i * Lds + j] -= C[i * 3] * tmp[j];
Slater_inv[i * Lds + j] -= C[i * 3 + 1] * tmp[Lds + j];
@ -356,19 +357,20 @@ uint32_t qmckl_woodbury_k_cublas_offload(cublasHandle_t b_handle, cusolverDnHand
int* ipiv = calloc(1, sizeof *ipiv * N_updates);
double* C = calloc(1, sizeof *C * Dim * N_updates);
double* B = calloc(1, sizeof *B * N_updates * N_updates);
double* Binv = calloc(1, sizeof *Binv * N_updates * N_updates);
double* D = calloc(1, sizeof *D * N_updates * Lds);
double* T1 = calloc(1, sizeof *T1 * N_updates * Lds);
double* T2 = calloc(1, sizeof *T2 * Dim * Lds);
int lwork = 0, *info = NULL; double* d_work = NULL;
cusolverDnDgetrf_bufferSize(s_handle, N_updates, N_updates, B, N_updates, &lwork);
printf("Size of lwork = %d\n", lwork);
d_work = calloc(1, sizeof *d_work * lwork);
#pragma omp target enter data map(to: Updates[0:Lds*N_updates], \
Updates_index[0:N_updates], \
Slater_inv[0:Dim*Lds]) \
map(alloc: B[0:N_updates*N_updates], \
Binv[0:N_updates*N_updates], \
C[0:Dim*N_updates], \
D[0:N_updates*Lds], \
T1[0:N_updates*Lds], \
@ -408,35 +410,39 @@ uint32_t qmckl_woodbury_k_cublas_offload(cublasHandle_t b_handle, cusolverDnHand
(void) cusolverDnDgetrf(s_handle, N_updates, N_updates, B, N_updates, d_work, ipiv, info);
}
double det = 1.0f; uint32_t j = 0;
#pragma omp target teams distribute parallel for // compute det ON DEVICE
bool swap = false; uint32_t j = 0; double det = 1.0f;
#pragma omp target teams distribute parallel for reduction(+: j) reduction(*: det)
for (uint32_t i = 0; i < N_updates; i++)
{
int row = ipiv[i] - i;
j += min(row, 1);
det *= B[(N_updates + 1) * i]; // update determinant
swap = (bool)(ipiv[i] - (i + 1)); // swap = {0->false: no swap, >0->true: swap}
j += (uint32_t)swap; // count # of swaps
det *= B[i * (N_updates + 1)]; // prod. of diag elm. of B
}
if ((j & 1) == 0) det = -det; // multiply det with -1 if j is even
// Check if determinant of B is not too close to zero
if (fabs(det) < breakdown) return det;
// Update det(Slater) if passed
if (determinant) *determinant *= det;
if (fabs(det) < breakdown) return det; // check if determinant of B is too close to zero. If so, exit early.
if ((j & 1) != 0) det = -det; // multiply det with -1 if # of swaps is odd
if (determinant) *determinant *= det; // update det(Slater) if determinant!=NULL
// Compute B^{-1}
#pragma omp target update from(B[0:N_updates*N_updates], ipiv[0:N_updates])
(void) LAPACKE_dgetri(LAPACK_COL_MAJOR, N_updates, B, N_updates, ipiv); // compute B^-1 ON HOST
#pragma omp target update to(B[:N_updates*N_updates]) // Update B^-1 TO DEVICE
#pragma omp target teams distribute parallel for
for (int i = 0; i < N_updates; ++i) {
for (int j = 0; j < N_updates; ++j) {
Binv[i * N_updates + j] = (i == j);
}
}
#pragma omp target data use_device_ptr(B, ipiv, Binv) // correct result Binv, but in CM!
{
(void) cusolverDnDgetrs(s_handle, CUBLAS_OP_N, N_updates, N_updates, B, N_updates, ipiv, Binv, N_updates, info);
}
// T1 = B^{-1} D : KxLDS = KxK X KxLDS : standard dgemm
#pragma omp target data use_device_ptr(D, B, T1) // compute T1 ON DEVICE
#pragma omp target data use_device_ptr(D, Binv, T1) // compute T1 ON DEVICE
{
alpha = 1.0, beta = 0.0;
(void) cublasDgemm(b_handle,
CUBLAS_OP_N, CUBLAS_OP_T, // REMEMBER THIS IS TMP TRANSPOSED BECAUSE OF LAPACKE CALL ON l429 !!!
Lds, N_updates, N_updates,
&alpha, D, Lds, B, N_updates,
&alpha, D, Lds, Binv, N_updates,
&beta, T1, Lds);
}
@ -463,14 +469,16 @@ uint32_t qmckl_woodbury_k_cublas_offload(cublasHandle_t b_handle, cusolverDnHand
Updates_index[0:N_updates], \
Slater_inv[0:Dim*Lds], \
B[0:N_updates*N_updates], \
Binv[0:N_updates*N_updates], \
C[0:Dim*N_updates], \
D[0:N_updates*Lds], \
T1[0:N_updates*Lds], \
T2[0:Dim*Lds], \
ipiv[0:N_updates])
// free(ipiv);
free(ipiv);
free(B);
free(Binv);
free(C);
free(D);
free(T1);
@ -501,8 +509,8 @@ uint32_t qmckl_slagel_splitting(
// C = S^{-1} x U_l
for (uint32_t i = 0; i < Dim; i++) {
C[i] = 0.0;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
}
@ -518,8 +526,8 @@ uint32_t qmckl_slagel_splitting(
// U_l = U_l / 2: split the update in 2 equal halves and save the second halve
// in later_updates
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t i = 0; i < Lds; i++) {
later_updates[*later * Lds + i] = Updates[l * Lds + i] / 2.0;
C[i] /= 2.0;
@ -534,16 +542,16 @@ uint32_t qmckl_slagel_splitting(
if (!determinant) *determinant *= den;
// D = v^T x S^{-1} : 1 x LDS
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
D[j] = Slater_inv[cui * Lds + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint32_t i = 0; i < Dim; i++) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
const double update = C[i] * D[j] * iden;
Slater_inv[i * Lds + j] -= update;
@ -737,8 +745,8 @@ uint32_t qmckl_sherman_morrison_later(
// C = A^{-1} x U_l
for (uint32_t i = 0; i < Dim; i++) {
C[i] = 0.0;
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
C[i] += Slater_inv[i * Lds + j] * Updates[l * Lds + j]; // regular mat-vec product, but actually working on S_inv^T * U_l.
}
@ -748,8 +756,8 @@ uint32_t qmckl_sherman_morrison_later(
const int cui = Updates_index[l] - 1;
double den = 1.0 + C[cui];
if (fabs(den) < breakdown) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
// for (uint32_t i = 0; i < Dim; i++) {
for (uint32_t i = 0; i < Lds; i++) {
later_updates[later * Lds + i] = Updates[l * Lds + i];
@ -764,16 +772,16 @@ uint32_t qmckl_sherman_morrison_later(
if (!determinant) *determinant *= den;
// D = v^T x A^{-1}
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
D[j] = Slater_inv[cui * Lds + j];
}
// S^{-1} = S^{-1} - C x D / den
for (uint32_t i = 0; i < Dim; i++) {
#pragma ivdep
#pragma vector aligned
#pragma ivdep
#pragma vector aligned
for (uint32_t j = 0; j < Lds; j++) {
const double update = C[i] * D[j] * iden;
Slater_inv[i * Lds + j] -= update;