Initial commit.

This commit is contained in:
François Coppens 2021-01-25 15:25:23 +01:00
commit 3704856b10
3 changed files with 318 additions and 0 deletions

71
SM-Coppens-1.m Normal file
View File

@ -0,0 +1,71 @@
## Based on Algorithm 3 from P. Maponi,
## p. 283, doi:10.1016/j.laa.2006.07.007
clc ## Clear the screen
## Define the matrix to be inverted. This is example 8 from the paper
## In the future this matrix needs to be read from the function call arguments
#A=[1,1,-1; ...
# 1,1,0; ...
# -1,0,-1];
#A0=diag(diag(A)); ## The diagonal part of A
### The modified example that gives all singular updates at some point
#A=[1,1,1; ...
# 1,1,0; ...
# -1,0,-1];
#A0=diag(diag(A)); ## The diagonal part of A
## A uniform distributed random square (5x5) integer matrix with entries in [-1,1]
do
A=randi([-1,1],5,5);
#A=rand(5);
A0=diag(diag(A)); ## The diagonal part of A
until (det(A)!=0 && det(A0)!=0) ## We need both matrices to be simultaniously non-singular
A
printf("Determinant of A is: %d\n",det(A))
printf("Determinant of A0 is: %d\n\n",det(A0))
Ar=A-A0; ## The remainder of A
nCols=columns(Ar); ## The number of coluns of A (M in accompanying PDF)
Id=eye(nCols); ## Identity matrix, used for the Cartesian basis vectors
Ainv=zeros(nCols,nCols,nCols+1); ## 3d matrix to store intermediate inverse of A
U=zeros(nCols,nCols,nCols); ## 3d matrix to store the nCols rank-1 updates
a=zeros(1,nCols); ## Vector containing the break-down values
used=zeros(1,nCols); ## Vector to keep track of which updates have been used
## Loop to calculate A0_inv and the rank-1 updates and store in U
Ainv(:,:,1)=eye(nCols);
for i=1:nCols
Ainv(i,i,1)=1/A0(i,i);
U(:,:,i)=Ar(:,i)*transpose(Id(:,i));
endfor
## Here starts the calculation of the inverse of A
for i=1:nCols ## Outer loop iterated over the intermediates A_l^-1, M times in total
## Here the break-down values are calculated for each intermediate inverse
for j=1:nCols
a(j)=1 + transpose(Id(:,j)) * Ainv(:,:,i) * Ar(:,j); ## First time all elmts 1 because A0_inv is diagonal
printf("a(%d) = %f\n",j,a(j))
## Select next update ONLY if break-down value != 0 AND not yet used
if (a(j)!=0 && used(j)!=1);
k=j;
break;
endif
endfor
## Do the actual S-M update
Ainv(:,:,i+1) = Ainv(:,:,i) - Ainv(:,:,i) * U(:,:,k) * Ainv(:,:,i) / a(k);
used(k)=1; ## Mark this update as used
endfor
## Test if the inverse found is really an inverse (does not work if values are floats)
if (A*Ainv(:,:,nCols+1)==eye(nCols))
printf("\n");
printf("Inverse found. A^{-1}:\n");
Ainv(:,:,nCols+1)
else
printf("\n");
printf("Inverse NOT found! A*A^{-1}:\n");
A*Ainv(:,:,nCols+1)
endif

112
SMMaponiA3.m Normal file
View File

@ -0,0 +1,112 @@
## Algorithm 3 from P. Maponi,
## p. 283, doi:10.1016/j.laa.2006.07.007
clc ## Clear the screen
## Define the matrix to be inverted. This is example 8 from the paper
## In the future this matrix needs to be read from the function call arguments
A=[1,1,-1; ...
1,1,0; ...
-1,0,-1];
A0=diag(diag(A)); ## The diagonal part of A
### The modified example that gives all singular updates at some point
#A=[1,1,1; ...
# 1,1,0; ...
# -1,0,-1];
#A0=diag(diag(A)); ## The diagonal part of A
### A square uniform distributed random integer matrix with entries in [-1,1]
#do
# A=randi([-1,1],3,3);
# A0=diag(diag(A)); ## The diagonal part of A
#until (det(A)!=0 && det(A0)!=0) ## We need both matrices to be simultaniously non-singular
### A square uniform distributed random float matrix with entries in (0,1)
#do
# A=rand(5);
# A0=diag(diag(A)); ## The diagonal part of A
#until (det(A)!=0 && det(A0)!=0) ## We need both matrices to be simultaniously non-singular
Ar=A-A0; ## The remainder of A
nCols=columns(Ar); ## The number of coluns of A (M in accompanying PDF)
Id=eye(nCols);
A0inv=eye(nCols);
Ainv=zeros(nCols,nCols);
ylk=zeros(nCols,nCols,nCols);
p=zeros(nCols,1);
breakdown=zeros(nCols,1);
A,A0
printf("Determinant of A is: %d\n",det(A))
printf("Determinant of A0 is: %d\n",det(A0))
## Calculate the inverse of A0 and populate p-vector
for i=1:nCols
A0inv(i,i) = 1 / A0(i,i);
p(i)=i;
endfor
## Calculate all the y0k in M^2 multiplications instead of M^3
for k=1:nCols
for i=1:nCols
#printf("(i,k,1) = (%d,%d,1)\n",i,k);
ylk(i,k,1) = A0inv(i,i) * Ar(i,k);
endfor
endfor
## Calculate all the ylk from the y0k calculated previously
for l=2:nCols
## Calculate break-down conditions and put in a vector
for j=l-1:nCols
breakdown(j) = abs(1+ylk(p(j),p(j),l-1));
#printf("|1 + ylk(%d,%d,%d)|\n", p(j), p(j), l-1);
endfor
[val, lbar] = max(breakdown); ## Find the index of the max value
breakdown=zeros(nCols,1); ## Reset the entries to zero for next l-round
## Swap p(l) and p(lbar)
tmp=p(l-1);
p(l-1)=p(lbar);
p(lbar)=tmp;
for k=l:nCols
for i=1:nCols
ylk(i,p(k),l) = ylk(i,p(k),l-1) - (ylk(p(l-1),p(k),l-1)) / (1+ylk(p(l-1),p(l-1),l-1)) * (ylk(i,p(l-1),l-1));
#printf("ylk(%d,%d,%d) = ylk(%d,%d,%d) - (ylk(%d,%d,%d) / (1+ylk(%d,%d,%d) * (ylk(%d,%d,%d);\n", i,p(k),l,i,p(k),l-1,p(l-1),p(k),l-1,p(l-1),p(l-1),l-1,i,p(l-1),l-1);
endfor
endfor
endfor
## Construct A-inverse from A0-inverse and the ylk
Ainv=A0inv;
for l=1:nCols
Ainv=(Id - ylk(:,p(l),l) * transpose(Id(:,p(l))) / (1 + ylk(p(l),p(l),l))) * Ainv;
#printf("Ainv=(Id - ylk(:,%d,%d) * transpose(Id(:,%d)) / (1 + ylk(%d,%d,%d))) * Ainv\n",p(l),l,p(l),p(l),p(l),l);
endfor
## Test if the inverse found is really an inverse (does not work if values are floats)
IdTest=A*Ainv;
if (IdTest==eye(nCols))
printf("\n");
printf("Inverse of A^{-1} FOUND!\n");
Ainv
else
printf("\n");
printf("Inverse of A^{-1} NOT found yet.\nRunning another test...\n");
for i=1:nCols
for j=1:nCols
if (abs(IdTest(i,j))<cutOff)
IdTest(i,j)=0;
elseif (abs(IdTest(i,j))-1<cutOff)
IdTest(i,j)=1;
endif
endfor
endfor
if (IdTest==eye(nCols))
printf("\n");
printf("Inverse of A^{-1} FOUND!\n");
Ainv
else
printf("\n");
printf("Still not found. Giving up!\n");
IdTest
endif
endif

135
SMMaponiA4.m Normal file
View File

@ -0,0 +1,135 @@
## Algorithm 4 from P. Maponi,
## p. 283, doi:10.1016/j.laa.2006.07.007
clc ## Clear the screen
% ## Define the matrix to be inverted. This is example 8 from the paper
% ## In the future this matrix needs to be read from the function call arguments
% A=[1,1,-1; ...
% 1,1,0; ...
% -1,0,-1];
## The modified example that gives all singular updates at some point
A=[1,1,1; ...
1,1,0; ...
-1,0,-1];
%## A square uniform distributed random integer matrix with entries in [-1,1]
%do
% A=randi([-5,5],4,4);
%until (det(A)!=0) ## We neec matrix non-singular
% ## A square uniform distributed random float matrix with entries in (0,1)
% do
% A=rand(5);
% until (det(A)!=0) ## We need matrix non-singular
nCols=columns(A); ## The number of coluns of A (M in accompanying PDF)
Id=eye(nCols);
d=0.1
A0=d*eye(nCols);
Ar=A-A0; ## The remainder of A
A0inv=eye(nCols);
Ainv=zeros(nCols,nCols);
ylk=zeros(nCols,nCols,nCols);
breakdown=zeros(nCols,1);
cutOff=1e-10;
## Calculate the inverse of A0 and populate p-vector
for i=1:nCols
A0inv(i,i) = 1 / A0(i,i);
p(i)=i;
endfor
A,A0,Ar,A0inv
printf("Determinant of A is: %d\n",det(A))
printf("Determinant of A0 is: %d\n",det(A0))
printf("Determinant of A0inv is: %d\n",det(A0inv))
## Calculate all the y0k in M^2 multiplications instead of M^3
for k=1:nCols
for i=1:nCols
ylk(i,k,1) = A0inv(i,i) * Ar(i,k);
% printf("ylk(%d,%d,1) = A0inv(%d,%d) * Ar(%d,%d)\n",i,k,i,i,i,k);
endfor
endfor
## Calculate all the ylk from the y0k calculated previously
for l=2:3#nCols
el=Id(:,l-1);
## Calculate break-down conditions and put in a vector
for j=l-1:nCols
#breakdown(j) = abs( el(j) + ylk(j,l-1,l-1) )
breakdown(j) = abs( el(j) + ylk(j,j,l-1) )
% printf("|el(%d) + ylk(%d,%d,%d)|\n", j, j, l-1, l-1);
endfor
[val, s] = max(breakdown); ## Find the index of the max value
printf("l = %d\ns = %d\n",l-1,s);
breakdown=zeros(nCols,1); ## Reset the entries to zero for next l-round
if (s!=l-1) ## Apply partial pivoting
## Swap yl-1,k(r) and yl-1,k(s) for all k=l,l+1,...,M
r=l-1
for k=l-1:nCols
tmp=ylk(r,k,l-1)
ylk(r,k,l-1)=ylk(s,k,l-1);
printf("ylk(%d,%d,%d)=ylk(%d,%d,%d)\n",r,k,l-1,s,k,l-1);
ylk(s,k,l-1)=tmp;
endfor
## Modify yl-1,r and yl-1,s
er=Id(:,r);
es=Id(:,s);
ylk(:,r,l-1) = ylk(:,r,l-1) + es - er;
ylk(:,s,l-1) = ylk(:,s,l-1) + er - es;
endif
## Compute finally the yl,k
for k=l:nCols
for i=1:nCols
ylk(i,k,l) = ylk(i,k,l-1) - ylk(l-1,k,l-1) / (1 + ylk(l-1,l-1,l-1)) * ylk(i,l-1,l-1);
printf("ylk(%d,%d,%d) = ylk(%d,%d,%d) - (ylk(%d,%d,%d) / (1+ylk(%d,%d,%d) * (ylk(%d,%d,%d)\n",i,k,l,i,k,l-1,l-1,k,l-1,l-1,l-1,l-1,i,l-1,l-1);
endfor
endfor
endfor
## Construct A-inverse from A0-inverse and the ylk
Ainv=A0inv;
for l=1:nCols
Ainv=(Id - ylk(:,l,l) * transpose(Id(:,l)) / (1 + ylk(l,l,l))) * Ainv;
% printf("Ainv=(Id - ylk(:,%d,%d) * transpose(Id(:,%d)) / (1 + ylk(%d,%d,%d))) * Ainv\n",l,l,l,l,l,l);
endfor
## Test if the inverse found is really an inverse (does not work if values are floats)
IdTest=A*Ainv
if (IdTest==eye(nCols))
printf("\n");
printf("Inverse of A^{-1} FOUND!\n");
Ainv
else
printf("\n");
printf("Inverse of A^{-1} NOT found yet.\nRunning another test...\n");
for i=1:nCols
for j=1:nCols
if (abs(IdTest(i,j))<cutOff)
IdTest(i,j)=0;
elseif (abs(IdTest(i,j))-1<cutOff)
IdTest(i,j)=1;
endif
endfor
endfor
if (IdTest==eye(nCols))
printf("\n");
printf("Inverse of A^{-1} FOUND!\n");
Ainv
else
printf("\n");
printf("Still not found. Giving up!\n");
Ainv,IdTest
endif
endif