* Woodburry 3x3 kernel fixed

* Written Unified Sherman-Morrison-Woodbury kernel that partitions
  the updates in blocks of 3 and tries them with Woodbury 3x3.
  The remainder of 2 or one are attempted with Woodbury 2x2 and SM2.

For now the unified kernel gives fails where pure SM2 does not.
I suspect there is something going wrong in how the updates are partitioned.
This commit is contained in:
Francois Coppens 2021-06-15 11:53:04 +02:00
parent b6efc97233
commit 22590b7684
5 changed files with 181 additions and 75 deletions

View File

@ -75,26 +75,6 @@ void showMatrix2(T *matrix, unsigned int M, unsigned int N, std::string name) {
std::cout << std::endl;
}
template <typename T>
void showMatrixNS(T *matrix, unsigned int M, unsigned int N, std::string name) {
std::cout.precision(17);
std::cout << name << " = [" << std::endl;
for (unsigned int i = 0; i < M; i++) {
std::cout << "[";
for (unsigned int j = 0; j < N; j++) {
if (matrix[i * N + j] >= 0) {
std::cout << " " << matrix[i * N + j] << ",";
} else {
std::cout << " " << matrix[i * N + j] << ",";
}
}
std::cout << " ]," << std::endl;
}
std::cout << "]" << std::endl;
std::cout << std::endl;
}
template <typename T> T *transpose(T *A, unsigned int M) {
T *B = new T[M * M];
for (unsigned int i = 0; i < M; i++) {

View File

@ -8,11 +8,58 @@
void SMWB1(double *Slater_inv, unsigned int Dim, unsigned int N_updates, double *Updates, unsigned int *Updates_index) {
std::cerr << "Called Sherman-Morrison-Woodbury kernel 1 with " << N_updates << " updates" << std::endl;
unsigned int n_of_3blocks = N_updates / 3;
unsigned int remainder = N_updates % 3;
unsigned int length_3block = 3 * Dim;
unsigned int length_2block = 2 * Dim;
unsigned int length_1block = 1 * Dim;
// std::cerr << "Number of blocks: " << n_of_3blocks << ". Remainder: " << remainder << "." << std::endl;
// Apply first 3*n_of_3blocks updates in n_of_3blocks blocks of 3 updates with Woodbury 3x3 kernel
if (n_of_3blocks > 0) {
for (unsigned int i = 0; i < n_of_3blocks; i++) {
double Updates_3block[length_3block];
unsigned int Updates_index_3block[3];
Updates_index_3block[0] = Updates_index[3 * i + 0];
Updates_index_3block[1] = Updates_index[3 * i + 1];
Updates_index_3block[2] = Updates_index[3 * i + 2];
for (unsigned int j = 0; j < length_3block; j++) {
Updates_3block[j] = Updates[i * length_3block + j];
}
bool ok;
ok = WB2(Slater_inv, Dim, Updates, Updates_index);
if (!ok) {
std::cerr << "Woodbury kernel failed!" << std::endl;
SM2(Slater_inv, Dim, N_updates, Updates, Updates_index);
ok = WB3(Slater_inv, Dim, Updates_3block, Updates_index_3block);
if (!ok) { // Send the entire block to SM2
std::cerr << "Woodbury 3x3 kernel failed! Sending block to SM2" << std::endl;
SM2(Slater_inv, Dim, 3, Updates_3block, Updates_index_3block);
}
}
}
if (remainder == 2) { // Apply last remaining block of 2 updates with Woodbury 2x2 kernel
double Updates_2block[length_2block];
unsigned int Updates_index_2block[2];
Updates_index_2block[0] = Updates_index[3 * n_of_3blocks + 0];
Updates_index_2block[1] = Updates_index[3 * n_of_3blocks + 1];
for (unsigned int i = 0; i < length_2block; i++) {
Updates_2block[i] = Updates[n_of_3blocks * length_3block + i];
}
bool ok;
ok = WB2(Slater_inv, Dim, Updates_2block, Updates_index_2block);
if (!ok) { // Send the entire block to SM2
std::cerr << "Woodbury 2x2 kernel failed! Sending block to SM2" << std::endl;
SM2(Slater_inv, Dim, 2, Updates_2block, Updates_index_2block);
}
} else if (remainder == 1) { // Apply last remaining update with SM2
double Updates_1block[length_1block];
unsigned int Updates_index_1block[1];
Updates_index_1block[0] = Updates_index[3 * n_of_3blocks + 0];
for (unsigned int i = 0; i < length_1block; i++) {
Updates_1block[i] = Updates[n_of_3blocks * length_3block + i];
}
SM2(Slater_inv, Dim, 1, Updates_1block, Updates_index_1block);
} else { // remainder == 0
// Nothing left to do.
}
}

View File

@ -2,21 +2,22 @@
Woodbury 2x2 and 3x3 kernels
Woodbury matrix identity:
(S + U V)^{-1} = S^{-1} - C B^{-1} D
C := S^{-1} U, dim x 2
B := 1 + V C, 2 x 2
D := V S^{-1}, 2 x dim
All matrices are stored in row-major order */
All matrices are stored in row-major order
*/
#include "Woodbury.hpp"
#include "Helpers.hpp"
// Woodbury 2x2 kernel:
// Woodbury 2x2 kernel
bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
unsigned int *Updates_index) {
/*
C := S^{-1} * U, dim x 2
B := 1 + V * C, 2 x 2
D := V * S^{-1}, 2 x dim
*/
std::cerr << "Called Woodbury 2x2 kernel" << std::endl;
// Construct V from Updates_index
@ -25,23 +26,23 @@ bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
V[Updates_index[0] - 1] = 1;
V[Dim + Updates_index[1] - 1] = 1;
// Compute C = S_inv U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[2 * Dim];
for(unsigned int i = 0; i < Dim; i++) {
for(unsigned int j = 0; j < 2; j++) {
C[i * 2 + j] = 0;
for(unsigned int k = 0; k < Dim; k++) {
C[i * 2 + j] += Slater_inv[i * Dim + k] * Updates[4 * j + k];
C[i * 2 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
// Compute D = V x S^{-1}
// Compute D = V * S^{-1}
double D[2 * Dim];
matMul2(V, Slater_inv, D, 2, Dim, Dim);
// Compute B = 1 + V C
// Compute B = 1 + V * C
double B[4];
matMul2(V, C, B, 2, Dim, 2);
B[0] += 1;
@ -56,9 +57,9 @@ bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
Binv[3] = idet * B[0];
// Check if determinant of inverted matrix is not zero
double det = B[0] * B[3] - B[1] * B[2];
double det = Binv[0] * Binv[3] - Binv[1] * Binv[2];
if (std::fabs(det) < threshold()) {
std::cerr << "Determinant approached 0!" << std::endl;
std::cerr << "Determinant approaching 0!" << std::endl;
return false;
}
@ -81,58 +82,128 @@ bool WB2(double *Slater_inv, unsigned int Dim, double *Updates,
// Woodbury 3x3 kernel
bool WB3(double *Slater_inv, unsigned int Dim, double *Updates,
unsigned int *Updates_index) {
/*
C := S^{-1} * U, dim x 3
B := 1 + V * C, 3 x 3
D := V * S^{-1}, 3 x dim
*/
std::cerr << "Called Woodbury 3x3 kernel" << std::endl;
#ifdef DEBUG
showMatrix2(Slater_inv, Dim, Dim, "Slater_inv BEFORE update");
showMatrix2(Updates, 3, Dim, "Updates");
showMatrix2(Updates_index, 1, 3, "Updates_index");
#endif
// Construct V from Updates_index
unsigned int V[3 * Dim]; // 2 x Dim matrix stored in row-major order
unsigned int V[3 * Dim]; // 3 x Dim matrix stored in row-major order
std::memset(V, 0, 3 * Dim * sizeof(unsigned int));
V[Updates_index[0] - 1] = 1;
V[Dim + Updates_index[1] - 1] = 1;
V[2 * Dim + Updates_index[2] - 1] = 1;
// Compute C
#ifdef DEBUG
showMatrix2(V, 3, Dim, "V");
#endif
// Compute C = S_inv * U !! NON-STANDARD MATRIX MULTIPLICATION BECAUSE
// OF LAYOUT OF 'Updates' !!
double C[3 * Dim];
matMul2(Slater_inv, Updates, C, Dim, Dim, 3);
// Compute B
for(unsigned int i = 0; i < Dim; i++) {
for(unsigned int j = 0; j < 3; j++) {
C[i * 3 + j] = 0;
for(unsigned int k = 0; k < Dim; k++) {
C[i * 3 + j] += Slater_inv[i * Dim + k] * Updates[Dim * j + k];
}
}
}
#ifdef DEBUG
showMatrix2(C, Dim, 3, "C = S_inv * U");
#endif
// Compute D = V * S^{-1}
double D[3 * Dim];
matMul2(V, Slater_inv, D, 3, Dim, Dim);
#ifdef DEBUG
showMatrix2(D, 3, Dim, "D = V * S_inv");
#endif
// Compute B = 1 + V * C
double B[9];
matMul2(V, C, B, 3, Dim, 3);
// Compute 1 + B
B[0] += 1;
B[4] += 1;
B[8] += 1;
double Binv[9];
Binv[0] = B[4] * B[8] - B[5] * B[7];
Binv[3] = B[5] * B[6] - B[3] * B[8];
Binv[6] = B[3] * B[7] - B[4] * B[6];
#ifdef DEBUG
showMatrix2(B, 3, 3, "B = 1 + V * C");
#endif
Binv[1] = B[2] * B[7] - B[1] * B[8];
Binv[4] = B[0] * B[8] - B[2] * B[6];
Binv[7] = B[1] * B[6] - B[0] * B[7];
// Compute B^{-1} with explicit formula for 3x3 inversion
double Binv[9], det, idet;
det = B[0] * (B[4] * B[8] - B[5] * B[7]) -
B[1] * (B[3] * B[8] - B[5] * B[6]) +
B[2] * (B[3] * B[7] - B[4] * B[6]);
idet = 1.0 / det;
Binv[2] = B[1] * B[5] - B[2] * B[4];
Binv[5] = B[2] * B[3] - B[0] * B[5];
Binv[8] = B[0] * B[4] - B[1] * B[3];
#ifdef DEBUG
std::cerr << "Determinant of B = " << det << std::endl;
#endif
Binv[0] = ( B[4] * B[8] - B[7] * B[5] ) * idet;
Binv[1] = - ( B[1] * B[8] - B[7] * B[2] ) * idet;
Binv[2] = ( B[1] * B[5] - B[4] * B[2] ) * idet;
Binv[3] = - ( B[3] * B[8] - B[6] * B[5] ) * idet;
Binv[4] = ( B[0] * B[8] - B[6] * B[2] ) * idet;
Binv[5] = - ( B[0] * B[5] - B[3] * B[2] ) * idet;
Binv[6] = ( B[3] * B[7] - B[6] * B[4] ) * idet;
Binv[7] = - ( B[0] * B[7] - B[6] * B[1] ) * idet;
Binv[8] = ( B[0] * B[4] - B[3] * B[1] ) * idet;
#ifdef DEBUG
showMatrix2(Binv, 3, 3, "Binv");
#endif
// Check if determinant of inverted matrix is not zero
// If so, exigt and return false.
double det;
det = B[0] * (B[4] * B[8] - B[5] * B[7]) -
B[1] * (B[3] * B[8] - B[5] * B[6]) + B[2] * (B[3] * B[7] - B[4] * B[6]);
// double det;
det = Binv[0] * (Binv[4] * Binv[8] - Binv[5] * Binv[7]) -
Binv[1] * (Binv[3] * Binv[8] - Binv[5] * Binv[6]) +
Binv[2] * (Binv[3] * Binv[7] - Binv[4] * Binv[6]);
#ifdef DEBUG
std::cerr << "Determinant of Binv = " << det << std::endl;
#endif
if (std::fabs(det) < threshold()) {
std::cerr << "Determinant approached 0!" << std::endl;
return false;
}
// Compute (S + U * V)^{-1} with Woobury identity
double D[3 * Dim];
matMul2(V, Slater_inv, D, 3, Dim, Dim);
// Compute B^{-1} x D
double tmp[3 * Dim];
matMul2(Binv, D, tmp, 3, 3, Dim);
#ifdef DEBUG
showMatrix2(tmp, 3, Dim, "tmp = Binv * D");
#endif
// Compute C x B^{-1} x D
double tmp2[Dim * Dim];
matMul2(C, tmp, tmp2, Dim, 3, Dim);
#ifdef DEBUG
showMatrix2(tmp2, Dim, Dim, "tmp2 = C * tmp");
#endif
// Compute (S + U V)^{-1} = S^{-1} - C B^{-1} D
for (unsigned int i = 0; i < Dim * Dim; i++) {
Slater_inv[i] -= tmp2[i];
}
#ifdef DEBUG
showMatrix2(Slater_inv, Dim, Dim, "Slater_inv AFTER update");
#endif
return true;
}

View File

@ -33,15 +33,15 @@ program QMCChem_dataset_test
close(2000)
close(3000)
!! Write Updates to file to check
open(unit = 2000, file = "Updates.dat")
do i=1,dim
do j=1,n_updates
write(2000,"(E23.15, 1X)", advance="no") Updates(i,j)
end do
write(2000,*)
end do
close(2000)
! !! Write Updates to file to check
! open(unit = 2000, file = "Updates.dat")
! do i=1,dim
! do j=1,n_updates
! write(2000,"(E23.15, 1X)", advance="no") Updates(i,j)
! end do
! write(2000,*)
! end do
! close(2000)
!! Update S & transform replacement updates 'Updates'
!! into additive updates 'U' to compute the inverse
@ -53,6 +53,16 @@ program QMCChem_dataset_test
end do
end do
!! Write Updates to file to check
open(unit = 2000, file = "Updates.dat")
do i=1,dim
do j=1,n_updates
write(2000,"(E23.15, 1X)", advance="no") U(i,j)
end do
write(2000,*)
end do
close(2000)
!! Update S_inv
!! S_inv needs to be transposed first before it
!! goes to MaponiA3

View File

@ -52,8 +52,6 @@ int test_cycle(H5File file, int cycle, std::string version, double tolerance) {
showMatrix(slater_inverse, dim, "OLD Inverse");
#endif
showMatrix2(slater_matrix, dim, dim, "Slater");
// Transform replacement updates in 'updates[]' into additive updates in 'u[]'
for (j = 0; j < nupdates; j++) {
for (i = 0; i < dim; i++) {