saving work in Be

This commit is contained in:
Pierre-Francois Loos 2021-01-16 14:25:33 +01:00
parent a48eed1393
commit ae42fa3f92
2 changed files with 13 additions and 13 deletions

View File

@ -1,7 +1,7 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2021-01-14 16:29:49 +0100
%% Created for Pierre-Francois Loos at 2021-01-16 14:12:40 +0100
%% Saved with string encoding Unicode (UTF-8)
@ -4027,13 +4027,6 @@
year = {2018},
Bdsk-Url-1 = {https://dx.doi.org/10.1021/acs.jctc.8b00260}}
@article{Loos_2020,
author = {Pierre-Fran{\c c}ois Loos and Anthony Scemama and Ivan Duchemin and Denis Jacquemin and Xavier Blase},
date-added = {2020-05-18 21:40:28 +0200},
date-modified = {2020-05-18 22:14:08 +0200},
title = {Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies},
year = {2020}}
@article{Lu_2017,
abstract = {We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.},
author = {Jianfeng Lu and Kyle Thicke},

View File

@ -48,7 +48,7 @@ Accurately predicting ground- and excited-state energies (hence excitation energ
An armada of theoretical and computational methods have been developed to this end, each of them being plagued by its own flaws. \cite{Roos_1996,Piecuch_2002,Dreuw_2005,Krylov_2006,Sneskov_2012,Gonzales_2012,Laurent_2013,Adamo_2013,Ghosh_2018,Blase_2020,Loos_2020d,Casanova_2020}
The fact that none of these methods is successful in every chemical scenario has encouraged chemists to carry on the development of new excited-state methodologies, their main goal being to get the most accurate excitation energies (and properties) at the lowest possible computational cost in the most general context. \cite{Loos_2020d}
Originally developed in the framework of nuclear physics, \cite{Salpeter_1951} and popularized in condensed-matter physics, \cite{Sham_1966,Strinati_1984,Delerue_2000} one of the new emerging method in the computational chemistry landscape is the Bethe-Salpeter equation (BSE) formalism \cite{Salpeter_1951,Strinati_1988,Albrecht_1998,Rohlfing_1998,Benedict_1998,vanderHorst_1999,Blase_2018,Blase_2020} from many-body perturbation theory (MBPT) \cite{Onida_2002,Martin_2016} which, based on an underlying $GW$ calculation to compute accurate charged excitations and the dynamically-screened Coulomb potential, \cite{Hedin_1965,Golze_2019} is able to provide accurate optical (\ie, neutral) excitations for molecular systems at a rather modest computational cost.\cite{Rohlfing_1999a,Horst_1999,Puschnig_2002,Tiago_2003,Boulanger_2014,Jacquemin_2015a,Bruneval_2015,Jacquemin_2015b,Hirose_2015,Jacquemin_2017a,Jacquemin_2017b,Rangel_2017,Krause_2017,Gui_2018,Blase_2018,Liu_2020,Blase_2020,Holzer_2018a,Holzer_2018b,Loos_2020}
Originally developed in the framework of nuclear physics, \cite{Salpeter_1951} and popularized in condensed-matter physics, \cite{Sham_1966,Strinati_1984,Delerue_2000} one of the new emerging method in the computational chemistry landscape is the Bethe-Salpeter equation (BSE) formalism \cite{Salpeter_1951,Strinati_1988,Albrecht_1998,Rohlfing_1998,Benedict_1998,vanderHorst_1999,Blase_2018,Blase_2020} from many-body perturbation theory (MBPT) \cite{Onida_2002,Martin_2016} which, based on an underlying $GW$ calculation to compute accurate charged excitations and the dynamically-screened Coulomb potential, \cite{Hedin_1965,Golze_2019} is able to provide accurate optical (\ie, neutral) excitations for molecular systems at a rather modest computational cost.\cite{Rohlfing_1999a,Horst_1999,Puschnig_2002,Tiago_2003,Boulanger_2014,Jacquemin_2015a,Bruneval_2015,Jacquemin_2015b,Hirose_2015,Jacquemin_2017a,Jacquemin_2017b,Rangel_2017,Krause_2017,Gui_2018,Blase_2018,Liu_2020,Blase_2020,Holzer_2018a,Holzer_2018b,Loos_2020e}
Most of BSE implementations rely on the so-called static approximation, \cite{Blase_2018,Bruneval_2016,Krause_2017,Liu_2020} which approximates the dynamical (\ie, frequency-dependent) BSE kernel by its static limit.
Like adiabatic time-dependent density-functional theory (TD-DFT), \cite{Runge_1984,Casida_1995,Petersilka_1996,UlrichBook} the static BSE formalism is plagued by the lack of double (and higher) excitations, which are, for example, ubiquitous in conjugated molecules like polyenes\cite{Maitra_2004,Cave_2004,Saha_2006,Watson_2012,Shu_2017,Barca_2018a,Barca_2018b,Loos_2019} or the ground state of open-shell molecules, \cite{Casida_2005,Huix-Rotllant_2011,Loos_2020f} and can be a real challenge to accurately predict even with state-of-the-art methods, \cite{Loos_2018a,Loos_2019,Loos_2020c,Loos_2020d,Veril_2020} like the approximate third-order coupled-cluster (CC3) method \cite{Christiansen_1995b,Koch_1997} or equation-of-motion coupled-cluster with singles, doubles and triples (EOM-CCSDT). \cite{Kucharski_1991,Kallay_2004,Hirata_2000,Hirata_2004}
Indeed, both adiabatic TD-DFT \cite{Levine_2006,Tozer_2000,Elliott_2011,Maitra_2012,Maitra_2016} and static BSE \cite{ReiningBook,Romaniello_2009b,Sangalli_2011,Loos_2020h,Authier_2020} can only access (singlet and triplet) single excitations with respect to the reference determinant usually taken as the closed-shell singlet ground state.
@ -603,10 +603,17 @@ Throughout this work, all spin-flip calculations are performed with a UHF refere
As a first example, we consider the simple case of the beryllium atom in a small basis (6-31G) which was considered by Krylov in two of her very first papers on spin-flip methods \cite{Krylov_2001a,Krylov_2001b} and was also considered in later studies thanks to its pedagogical value. \cite{Sears_2003,Casanova_2020}
Beryllium has a $^1S$ ground state with $1s^2 2s^2$ configuration.
The excitation energies corresponding to the first singlet and triplet single excitations $2s \to 2p$ with $P$ spatial symmetry as well as the first singlet and triplet double excitations $2s^2 \to 2p^2$ with $D$ and $P$ spatial symmetries (respectively) are reported in Table \ref{tab:Be} and depicted in Fig.~\ref{fig:Be} where we also consider the larger aug-cc-pVQZ basis.
The excitation energies corresponding to the first singlet and triplet single excitations $2s \to 2p$ with $P$ spatial symmetry as well as the first singlet and triplet double excitations $2s^2 \to 2p^2$ with $D$ and $P$ spatial symmetries (respectively) are reported in Table \ref{tab:Be} and depicted in Fig.~\ref{fig:Be}.
In the left side of Fig.~\ref{fig:Be}, SF-TD-DFT excitation energies obtained with the BLYP, B3LYP, and BH\&HLYP functionals are reported.
there is an increase of the exact exchange in the functional. As noticed in \cite{Casanova_2020}, for the BLYP functional we have the $^3P(1s^22s2p)$ and the $^1P(1s^22s2p)$ states that appear to be degenerated because their energies are given by the $2s/2p$ gap. The exact exchange break this degeneracy. However even with the increase of the exact exchange in the functionals, SF-TD-BH\&HLYP excitation energy for the $^1P(1s^22s2p)$ state is at 1.6 eV from the FCI reference. For the other states, SF-TD-BH\&HLYP excitation energies are in much better agreement with FCI. The middle part shows the SF-BSE results. They are close the FCI results, because of the fact that there is one hundred percent exact exchange in the BSE method, with an error of 0.02-0.6 eV depending on the scheme of SF-BSE. For the last excited state $^1D(1s^22p^2)$ the largest error is 0.85 eV with SF-dBSE@{\qsGW}, so we have a bad description of this state due to spin contamination. Generally we can observe that all the scheme with SF-BSE used do not increase significantly the accuracy of excitations energies.
The left side of Fig.~\ref{fig:Be} (red lines) reports SF-TD-DFT excitation energies obtained with the BLYP, B3LYP, and BH\&HLYP functionals, which correspond to an increase of exact exchange from 0\% to 50\%.
As mentioned in Ref.~\onlinecite{Casanova_2020}, the $^3P(1s^2 2s^1 2p^1)$ and the $^1P(1s^2 2s^1 2p^1)$ states are degenerate at the SF-TD-BLYP level and their excitation energies are given by the $2s$--$2p$ orbital energy difference due to the lack of coupling terms in the spin-flip block of the SD-TD-DFT equations (\textit{vide supra}).
Including exact exchange, like in SF-TD-B3LYP and SF-TD-BH\&HLYP, lifts this degeneracy.
However, the SF-TD-BH\&HLYP excitation energy of the $^1P(1s^2 2s^1 2p^1)$ state is still off by $1.6$ eV as compared to the FCI reference.
For the other states, the agreement between SF-TD-BH\&HLYP and FCI is significantly improved.
The center part of Fig.~\ref{fig:Be} (blue lines) shows the SF-BSE results alongside the SF-CIS excitation energies (purple line).
All of these are computed with 100\% of exact exchange with the inclusion of correlation in the case of SF-BSE thanks to the introduction of the screening.
They are close the FCI results, because of the fact that there is one hundred percent exact exchange in the BSE method, with an error of $0.02$-$0.6$ eV depending on the scheme of SF-BSE. For the last excited state $^1D(1s^2 2p^2)$ the largest error is $0.85$ eV with SF-dBSE@{\qsGW}, so we have a bad description of this state due to spin contamination. Generally we can observe that all the scheme with SF-BSE used do not increase significantly the accuracy of excitations energies.
%%% TABLE I %%%
\begin{squeezetable}
@ -780,7 +787,7 @@ there is an increase of the exact exchange in the functional. As noticed in \cit
The second system of interest is the \ce{H2} molecule where we stretch the bond. The ground state of the \ce{H2} molecule is a singlet with $(1\sigma_g)^2$ configuration. The three lowest singlets states are investigated during the stretching: the singly excited state B${}^1 \Sigma_u^+$ with $(1\sigma_g )~ (1\sigma_u)$ configuration, the singly excited state E${}^1 \Sigma_g^+$ with $(1\sigma_g )~ (2\sigma_g)$ configuration and the doubly excited state F${}^1 \Sigma_g^+$ with $(1\sigma_u )~ (1\sigma_u)$ configuration. Three methods with and without spin-flip are used to study these states. These methods are CIS, TD-BH\&HLYP and BSE and are compared to the reference, here the EOM-CCSD method. %that is equivalent to the FCI for the \ce{H2} molecule.
Left panel of Fig ~\ref{fig:H2} shows results of the CIS calculation with and without spin-flip. We can observe that both SF-CIS and CIS poorly describe the B${}^1 \Sigma_u^+$ state, especially at the dissociation limit with an error of more than 1 eV. The same analysis can be done for the F${}^1 \Sigma_g^+$ state at the dissociation limit. EOM-CSSD curves show us an avoided crossing between the E${}^1 \Sigma_g^+$ and F${}^1 \Sigma_g^+$ states due to their same symmetry. SF-CIS does not represent well the E${}^1 \Sigma_g^+$ state before the avoided crossing. But the E${}^1 \Sigma_g^+$ state is well describe after this avoided crossing. SF-CIS describes better the F${}^1 \Sigma_g^+$ state before the avoided crossing than at the dissociation limit. In general, SF-CIS does not give a good description of the double excitation. As expected CIS does not find the double excitation to the F${}^1 \Sigma_g^+$ state. The rigth panel gives results of the TD-BH\&HLYP calculation with and without spin-flip. TD-BH\&HLYP shows bad results for all the states of interest with and without spin-flip. Indeed, for the three states we have a difference in the excitation energy at the dissociation limit of several eV with and without spin-flip.
In the last panel we have results for BSE calculation with and without spin-flip. SF-BSE gives a good representation of the B${}^1 \Sigma_u^+$ state with error of 0.05-0.3 eV. However SF-BSE does not describe well the E${}^1 \Sigma_g^+$ state with error of 0.5-1.6 eV. SF-BSE shows a good agreement with the EOM-CCSD reference for the double excitation to the F${}^1 \Sigma_g^+$ state, indeed we have an error of 0.008-0.6 eV. BSE results for the B${}^1 \Sigma_u^+$ state are close to the reference until 2.0 \AA and the give bad agreement for the dissociation limit. For the E${}^1 \Sigma_g^+$ state BSE gives closer results to the reference than SF-BSE. However we can observe that for all the methods that we compared, when the spin-flip is not used standard methods can not retrieve double excitation. There is no avoided crossing or perturbation in the curve for the E${}^1 \Sigma_g^+$ state when spin-flip is not used. This is because for these methods we are in the space of single excitation and de-excitation.
In the last panel we have results for BSE calculation with and without spin-flip. SF-BSE gives a good representation of the B${}^1 \Sigma_u^+$ state with error of 0.05-0.3 eV. However SF-BSE does not describe well the E${}^1 \Sigma_g^+$ state with error of 0.5-1.6 eV. SF-BSE shows a good agreement with the EOM-CCSD reference for the double excitation to the F${}^1 \Sigma_g^+$ state, indeed we have an error of 0.008-0.6 eV. BSE results for the B${}^1 \Sigma_u^+$ state are close to the reference until 2.0 \AA~ and the give bad agreement for the dissociation limit. For the E${}^1 \Sigma_g^+$ state BSE gives closer results to the reference than SF-BSE. However we can observe that for all the methods that we compared, when the spin-flip is not used standard methods can not retrieve double excitation. There is no avoided crossing or perturbation in the curve for the E${}^1 \Sigma_g^+$ state when spin-flip is not used. This is because for these methods we are in the space of single excitation and de-excitation.
%%% FIG 2 %%%