modif Pina
This commit is contained in:
parent
a37955653c
commit
42b51637e9
@ -504,13 +504,13 @@ The purpose of the underlying $GW$ calculation is to provide quasiparticle energ
|
|||||||
\label{sec:BSE}
|
\label{sec:BSE}
|
||||||
%================================
|
%================================
|
||||||
|
|
||||||
The Dyson equation that links the generalized four-point susceptibility $L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)$ and the BSE kernel $\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)$ is
|
Within the so-called static approximation of BSE, the Dyson equation that links the generalized four-point susceptibility $L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)$ and the BSE kernel $\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6)$ is \cite{ReiningBook,Bruneval_2016a}
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
|
L^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
|
||||||
= L_{0}^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
|
= L_{0}^{\sig\sigp}(\br_1,\br_2;\br_1',\br_2';\omega)
|
||||||
\\
|
\\
|
||||||
+ \int L_{0}^{\sig\sigp}(\br_1,\br_4;\br_1',\br_3;\omega)
|
+ \int L_{0}^{\sig\sigp}(\br_1,\br_4;\br_1',\br_3;\omega)
|
||||||
\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
|
\Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6)
|
||||||
\\
|
\\
|
||||||
\times L^{\sig\sigp}(\br_6,\br_2;\br_5,\br_2';\omega)
|
\times L^{\sig\sigp}(\br_6,\br_2;\br_5,\br_2';\omega)
|
||||||
d\br_3 d\br_4 d\br_5 d\br_6
|
d\br_3 d\br_4 d\br_5 d\br_6
|
||||||
@ -523,15 +523,18 @@ where
|
|||||||
\end{multline}
|
\end{multline}
|
||||||
is the non-interacting analog of the two-particle correlation function $L$.
|
is the non-interacting analog of the two-particle correlation function $L$.
|
||||||
|
|
||||||
Within the $GW$ approximation, the BSE kernel is
|
Within the $GW$ approximation, the static BSE kernel is
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
i \Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6;\omega)
|
\label{eq:kernel}
|
||||||
|
i \Xi^{\sig\sigp}(\br_3,\br_5;\br_4,\br_6)
|
||||||
= \frac{\delta(\br_3 - \br_4) \delta(\br_5 - \br_6) }{\abs{\br_3-\br_6}}
|
= \frac{\delta(\br_3 - \br_4) \delta(\br_5 - \br_6) }{\abs{\br_3-\br_6}}
|
||||||
\\
|
\\
|
||||||
- \delta_{\sig\sigp} W(\br_3,\br_4;\omega) \delta(\br_3 - \br_6) \delta(\br_4 - \br_6)
|
- \delta_{\sig\sigp} W(\br_3,\br_4;\omega = 0) \delta(\br_3 - \br_6) \delta(\br_4 - \br_6)
|
||||||
\end{multline}
|
\end{multline}
|
||||||
where, as usual, we have not considered the higher-order terms in $W$ by neglecting the derivative $\partial W/\partial G$. \cite{Hanke_1980,Strinati_1982,Strinati_1984,Strinati_1988}
|
where, as usual, we have not considered the higher-order terms in $W$ by neglecting the derivative $\partial W/\partial G$. \cite{Hanke_1980,Strinati_1982,Strinati_1984,Strinati_1988}
|
||||||
Within the static approximation which consists in neglecting the frequency dependence of the dynamically-screened Coulomb potential, the spin-conserved and spin-flip BSE optical excitations are obtained by solving the usual Casida-like linear response (eigen)problem:
|
|
||||||
|
As readily seen in Eq.~\eqref{eq:kernel}, the static approximation consists in neglecting the frequency dependence of the dynamically-screened Coulomb potential.
|
||||||
|
In this case, the spin-conserved and spin-flip BSE optical excitations are obtained by solving the usual Casida-like linear response (eigen)problem:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:LR-BSE}
|
\label{eq:LR-BSE}
|
||||||
\begin{pmatrix}
|
\begin{pmatrix}
|
||||||
@ -1030,7 +1033,7 @@ We hope to these new encouraging results will stimulate new developments around
|
|||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\acknowledgements{
|
\acknowledgements{
|
||||||
We would like to thank Xavier Blase and Denis Jacquemin for insightful discussions.
|
We would like to thank Pina Romaniello, Xavier Blase, and Denis Jacquemin for insightful discussions.
|
||||||
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
|
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user