423 lines
18 KiB
Plaintext
423 lines
18 KiB
Plaintext
|
|
||
|
Running Job 1 of 1 h2_2,75.inp
|
||
|
qchem h2_2,75.inp_38573.0 /mnt/beegfs/tmpdir/qchem38573/ 0
|
||
|
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s h2_2,75.inp_38573.0 /mnt/beegfs/tmpdir/qchem38573/
|
||
|
Welcome to Q-Chem
|
||
|
A Quantum Leap Into The Future Of Chemistry
|
||
|
|
||
|
|
||
|
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
|
||
|
|
||
|
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
|
||
|
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
|
||
|
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
|
||
|
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
|
||
|
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
|
||
|
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
|
||
|
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
|
||
|
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
|
||
|
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
|
||
|
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
|
||
|
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
|
||
|
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
|
||
|
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
|
||
|
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
|
||
|
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
|
||
|
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
|
||
|
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
|
||
|
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
|
||
|
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
|
||
|
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
|
||
|
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
|
||
|
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
|
||
|
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
|
||
|
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
|
||
|
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
|
||
|
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
|
||
|
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
|
||
|
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
|
||
|
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
|
||
|
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
|
||
|
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
|
||
|
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
|
||
|
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
|
||
|
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
|
||
|
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
|
||
|
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
|
||
|
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
|
||
|
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
|
||
|
P. M. W. Gill, M. Head-Gordon
|
||
|
|
||
|
Contributors to earlier versions of Q-Chem not listed above:
|
||
|
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
|
||
|
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
|
||
|
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
|
||
|
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
|
||
|
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
|
||
|
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
|
||
|
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
|
||
|
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
|
||
|
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
|
||
|
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
|
||
|
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
|
||
|
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
|
||
|
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
|
||
|
C. F. Williams, Q. Wu, X. Xu, W. Zhang
|
||
|
|
||
|
Please cite Q-Chem as follows:
|
||
|
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
|
||
|
DOI: 10.1080/00268976.2014.952696
|
||
|
|
||
|
Q-Chem 5.2.1 for Intel X86 EM64T Linux
|
||
|
|
||
|
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
|
||
|
http://arma.sourceforge.net/
|
||
|
|
||
|
Q-Chem begins on Thu Dec 3 11:48:51 2020
|
||
|
|
||
|
Host:
|
||
|
0
|
||
|
|
||
|
Scratch files written to /mnt/beegfs/tmpdir/qchem38573//
|
||
|
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
|
||
|
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
|
||
|
MEM_TOTAL 5000
|
||
|
NAlpha2: 4
|
||
|
NElect 2
|
||
|
Mult 3
|
||
|
|
||
|
Checking the input file for inconsistencies... ...done.
|
||
|
|
||
|
--------------------------------------------------------------
|
||
|
User input:
|
||
|
--------------------------------------------------------------
|
||
|
$comment
|
||
|
SF-CIS
|
||
|
$end
|
||
|
|
||
|
$molecule
|
||
|
0 3
|
||
|
H 0 0 0
|
||
|
H 0 0 2.75
|
||
|
$end
|
||
|
|
||
|
$rem
|
||
|
JOBTYPE = sp
|
||
|
METHOD = HF
|
||
|
BASIS = CC-PVQZ
|
||
|
PURECART = 2222
|
||
|
SCF_CONVERGENCE = 9
|
||
|
THRESH = 12
|
||
|
MAX_SCF_CYCLES = 100
|
||
|
MAX_CIS_CYCLES = 100
|
||
|
SPIN_FLIP = TRUE
|
||
|
UNRESTRICTED = TRUE
|
||
|
CIS_N_ROOTS = 20
|
||
|
RPA = FALSE
|
||
|
$end
|
||
|
--------------------------------------------------------------
|
||
|
----------------------------------------------------------------
|
||
|
Standard Nuclear Orientation (Angstroms)
|
||
|
I Atom X Y Z
|
||
|
----------------------------------------------------------------
|
||
|
1 H 0.0000000000 0.0000000000 -1.3750000000
|
||
|
2 H 0.0000000000 0.0000000000 1.3750000000
|
||
|
----------------------------------------------------------------
|
||
|
Molecular Point Group D*h NOp =***
|
||
|
Largest Abelian Subgroup D2h NOp = 1
|
||
|
Nuclear Repulsion Energy = 0.19242808 hartrees
|
||
|
There are 2 alpha and 0 beta electrons
|
||
|
|
||
|
Q-Chem warning in module forms1/BasisType.C, line 1983:
|
||
|
|
||
|
You are not using the predefined 5D/6D in this basis set.
|
||
|
|
||
|
Requested basis set is cc-pVQZ
|
||
|
There are 20 shells and 70 basis functions
|
||
|
|
||
|
Total QAlloc Memory Limit 5000 MB
|
||
|
Mega-Array Size 188 MB
|
||
|
MEM_STATIC part 192 MB
|
||
|
|
||
|
Distance Matrix (Angstroms)
|
||
|
H ( 1)
|
||
|
H ( 2) 2.750000
|
||
|
|
||
|
A cutoff of 1.0D-12 yielded 204 shell pairs
|
||
|
There are 2625 function pairs
|
||
|
Smallest overlap matrix eigenvalue = 1.74E-03
|
||
|
|
||
|
Scale SEOQF with 1.000000e+00/1.000000e+00/1.000000e+00
|
||
|
|
||
|
Standard Electronic Orientation quadrupole field applied
|
||
|
Nucleus-field energy = -0.0000000041 hartrees
|
||
|
Guess from superposition of atomic densities
|
||
|
Warning: Energy on first SCF cycle will be non-variational
|
||
|
SAD guess density has 0.090382 electrons
|
||
|
|
||
|
-----------------------------------------------------------------------
|
||
|
General SCF calculation program by
|
||
|
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
|
||
|
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
|
||
|
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
|
||
|
Bang C. Huynh
|
||
|
-----------------------------------------------------------------------
|
||
|
Hartree-Fock
|
||
|
A unrestricted SCF calculation will be
|
||
|
performed using DIIS
|
||
|
SCF converges when DIIS error is below 1.0e-09
|
||
|
---------------------------------------
|
||
|
Cycle Energy DIIS error
|
||
|
---------------------------------------
|
||
|
1 0.1321683243 7.94e-04
|
||
|
2 24.8921519926 2.04e-01
|
||
|
3 24.8312510690 2.04e-01
|
||
|
4 24.8355065800 2.04e-01
|
||
|
5 24.8244841550 2.04e-01
|
||
|
6 24.8239875050 2.04e-01
|
||
|
7 24.8277668356 2.04e-01
|
||
|
8 24.8243815728 2.04e-01
|
||
|
9 24.8183052008 2.04e-01
|
||
|
10 24.8484140244 2.04e-01
|
||
|
11 24.8541443854 2.04e-01
|
||
|
12 24.8581850637 2.04e-01
|
||
|
13 24.9286485982 2.04e-01
|
||
|
14 24.9686561720 2.04e-01
|
||
|
15 25.0531311565 2.04e-01
|
||
|
16 25.1673286796 2.03e-01
|
||
|
17 -0.9769412897 2.54e-03
|
||
|
18 -0.9979758279 3.64e-04
|
||
|
19 -0.9986090400 5.79e-05
|
||
|
20 -0.9986262075 7.07e-06
|
||
|
21 -0.9986265817 2.83e-07
|
||
|
22 -0.9986265821 2.74e-08
|
||
|
23 -0.9986265821 4.10e-09
|
||
|
24 -0.9986265821 8.37e-10 Convergence criterion met
|
||
|
---------------------------------------
|
||
|
SCF time: CPU 2.05s wall 2.00s
|
||
|
<S^2> = 2.000000000
|
||
|
SCF energy in the final basis set = -0.9986265821
|
||
|
Total energy in the final basis set = -0.9986265821
|
||
|
|
||
|
Spin-flip UCIS calculation will be performed
|
||
|
CIS energy converged when residual is below 10e- 6
|
||
|
---------------------------------------------------
|
||
|
Iter Rts Conv Rts Left Ttl Dev Max Dev
|
||
|
---------------------------------------------------
|
||
|
1 0 20 0.095588 0.008335
|
||
|
2 0 20 0.006729 0.000707
|
||
|
3 2 18 0.000288 0.000036
|
||
|
4 20 0 0.000004 0.000000 Roots Converged
|
||
|
---------------------------------------------------
|
||
|
|
||
|
---------------------------------------------------
|
||
|
SF-CIS Excitation Energies
|
||
|
(The first "excited" state might be the ground state)
|
||
|
---------------------------------------------------
|
||
|
|
||
|
Excited state 1: excitation energy (eV) = -0.0866
|
||
|
Total energy for state 1: -1.00180776 au
|
||
|
<S**2> : 0.0003
|
||
|
S( 1) --> S( 2) amplitude = -0.5546 alpha
|
||
|
S( 1) --> V( 2) amplitude = 0.2909 alpha
|
||
|
S( 2) --> S( 1) amplitude = 0.7012 alpha
|
||
|
S( 2) --> V( 1) amplitude = 0.3131 alpha
|
||
|
|
||
|
Excited state 2: excitation energy (eV) = 0.0000
|
||
|
Total energy for state 2: -0.99862658 au
|
||
|
<S**2> : 2.0000
|
||
|
S( 1) --> S( 1) amplitude = 0.6343 alpha
|
||
|
S( 1) --> V( 1) amplitude = 0.2944 alpha
|
||
|
S( 2) --> S( 2) amplitude = -0.6268 alpha
|
||
|
S( 2) --> V( 2) amplitude = 0.3172 alpha
|
||
|
|
||
|
Excited state 3: excitation energy (eV) = 9.6877
|
||
|
Total energy for state 3: -0.64260991 au
|
||
|
<S**2> : 0.2196
|
||
|
S( 1) --> S( 1) amplitude = 0.7271 alpha
|
||
|
S( 1) --> V( 3) amplitude = 0.1864 alpha
|
||
|
S( 2) --> S( 2) amplitude = 0.6503 alpha
|
||
|
|
||
|
Excited state 4: excitation energy (eV) = 9.7773
|
||
|
Total energy for state 4: -0.63931635 au
|
||
|
<S**2> : 0.2584
|
||
|
S( 1) --> S( 2) amplitude = 0.6610 alpha
|
||
|
S( 1) --> V( 2) amplitude = -0.1833 alpha
|
||
|
S( 2) --> S( 1) amplitude = 0.6861 alpha
|
||
|
S( 2) --> V( 3) amplitude = 0.1928 alpha
|
||
|
|
||
|
Excited state 5: excitation energy (eV) = 12.8826
|
||
|
Total energy for state 5: -0.52520031 au
|
||
|
<S**2> : 0.9981
|
||
|
S( 1) --> S( 1) amplitude = -0.2439 alpha
|
||
|
S( 1) --> V( 1) amplitude = 0.5779 alpha
|
||
|
S( 2) --> S( 2) amplitude = 0.3796 alpha
|
||
|
S( 2) --> V( 2) amplitude = 0.6561 alpha
|
||
|
|
||
|
Excited state 6: excitation energy (eV) = 12.9734
|
||
|
Total energy for state 6: -0.52186405 au
|
||
|
<S**2> : 0.9613
|
||
|
S( 1) --> S( 2) amplitude = 0.4466 alpha
|
||
|
S( 1) --> V( 2) amplitude = 0.5211 alpha
|
||
|
S( 2) --> S( 1) amplitude = -0.1802 alpha
|
||
|
S( 2) --> V( 1) amplitude = 0.6778 alpha
|
||
|
|
||
|
Excited state 7: excitation energy (eV) = 16.0801
|
||
|
Total energy for state 7: -0.40769378 au
|
||
|
<S**2> : 0.9151
|
||
|
S( 1) --> S( 2) amplitude = -0.2123 alpha
|
||
|
S( 1) --> V( 8) amplitude = -0.3262 alpha
|
||
|
S( 2) --> V( 3) amplitude = 0.9043 alpha
|
||
|
|
||
|
Excited state 8: excitation energy (eV) = 16.1005
|
||
|
Total energy for state 8: -0.40694225 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 7) amplitude = -0.5720 alpha
|
||
|
S( 2) --> V( 5) amplitude = 0.8158 alpha
|
||
|
|
||
|
Excited state 9: excitation energy (eV) = 16.1005
|
||
|
Total energy for state 9: -0.40694224 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 6) amplitude = -0.5720 alpha
|
||
|
S( 2) --> V( 4) amplitude = 0.8158 alpha
|
||
|
|
||
|
Excited state 10: excitation energy (eV) = 16.2976
|
||
|
Total energy for state 10: -0.39969952 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 5) amplitude = 0.7308 alpha
|
||
|
S( 2) --> V( 7) amplitude = -0.6770 alpha
|
||
|
|
||
|
Excited state 11: excitation energy (eV) = 16.2976
|
||
|
Total energy for state 11: -0.39969952 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 4) amplitude = 0.7308 alpha
|
||
|
S( 2) --> V( 6) amplitude = -0.6770 alpha
|
||
|
|
||
|
Excited state 12: excitation energy (eV) = 16.7400
|
||
|
Total energy for state 12: -0.38344124 au
|
||
|
<S**2> : 0.9214
|
||
|
S( 1) --> V( 3) amplitude = 0.8858 alpha
|
||
|
S( 2) --> S( 2) amplitude = -0.1891 alpha
|
||
|
S( 2) --> V( 8) amplitude = -0.3829 alpha
|
||
|
|
||
|
Excited state 13: excitation energy (eV) = 18.7340
|
||
|
Total energy for state 13: -0.31016394 au
|
||
|
<S**2> : 0.8811
|
||
|
S( 1) --> V( 1) amplitude = 0.7397 alpha
|
||
|
S( 2) --> V( 2) amplitude = -0.6529 alpha
|
||
|
|
||
|
Excited state 14: excitation energy (eV) = 18.7952
|
||
|
Total energy for state 14: -0.30791667 au
|
||
|
<S**2> : 0.8852
|
||
|
S( 1) --> V( 2) amplitude = 0.7571 alpha
|
||
|
S( 2) --> V( 1) amplitude = -0.6291 alpha
|
||
|
|
||
|
Excited state 15: excitation energy (eV) = 23.4387
|
||
|
Total energy for state 15: -0.13727112 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 5) amplitude = 0.6804 alpha
|
||
|
S( 2) --> V( 7) amplitude = 0.7325 alpha
|
||
|
|
||
|
Excited state 16: excitation energy (eV) = 23.4387
|
||
|
Total energy for state 16: -0.13727112 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 4) amplitude = 0.6804 alpha
|
||
|
S( 2) --> V( 6) amplitude = 0.7325 alpha
|
||
|
|
||
|
Excited state 17: excitation energy (eV) = 23.6772
|
||
|
Total energy for state 17: -0.12850670 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 7) amplitude = 0.8170 alpha
|
||
|
S( 2) --> V( 5) amplitude = 0.5758 alpha
|
||
|
|
||
|
Excited state 18: excitation energy (eV) = 23.6772
|
||
|
Total energy for state 18: -0.12850670 au
|
||
|
<S**2> : 1.0000
|
||
|
S( 1) --> V( 6) amplitude = 0.8170 alpha
|
||
|
S( 2) --> V( 4) amplitude = 0.5758 alpha
|
||
|
|
||
|
Excited state 19: excitation energy (eV) = 25.5562
|
||
|
Total energy for state 19: -0.05945231 au
|
||
|
<S**2> : 0.9927
|
||
|
S( 1) --> V( 3) amplitude = 0.3839 alpha
|
||
|
S( 2) --> V( 8) amplitude = 0.9123 alpha
|
||
|
|
||
|
Excited state 20: excitation energy (eV) = 26.3676
|
||
|
Total energy for state 20: -0.02963332 au
|
||
|
<S**2> : 0.9928
|
||
|
S( 1) --> V( 8) amplitude = 0.9332 alpha
|
||
|
S( 2) --> V( 3) amplitude = 0.3253 alpha
|
||
|
|
||
|
---------------------------------------------------
|
||
|
SETman timing summary (seconds)
|
||
|
CPU time 0.99s
|
||
|
System time 0.00s
|
||
|
Wall time 1.38s
|
||
|
|
||
|
--------------------------------------------------------------
|
||
|
|
||
|
Orbital Energies (a.u.)
|
||
|
--------------------------------------------------------------
|
||
|
|
||
|
Alpha MOs
|
||
|
-- Occupied --
|
||
|
-0.5189 -0.4816
|
||
|
-- Virtual --
|
||
|
0.2424 0.2595 0.3941 0.4496 0.4496 0.5079 0.5079 0.6721
|
||
|
1.0789 1.1672 1.7932 1.7932 1.8218 1.8546 1.8546 1.8585
|
||
|
2.0602 2.0602 2.0633 2.0676 2.0676 2.0694 2.0694 2.0887
|
||
|
2.0887 2.3100 3.0456 3.0978 4.4115 4.4115 4.4581 4.4581
|
||
|
4.5163 4.5204 6.0558 6.0558 6.0558 6.0558 6.0559 6.0559
|
||
|
6.0559 6.0559 6.0559 6.0559 6.0562 6.0562 6.0602 6.0677
|
||
|
8.1009 8.1148 8.1148 8.1216 8.1216 8.1226 8.1226 8.1314
|
||
|
8.1314 8.2099 9.6305 9.6640 9.6932 9.6932 9.7135 9.7135
|
||
|
9.7432 9.7561 22.4253 22.5847
|
||
|
--------------------------------------------------------------
|
||
|
|
||
|
Ground-State Mulliken Net Atomic Charges
|
||
|
|
||
|
Atom Charge (a.u.) Spin (a.u.)
|
||
|
--------------------------------------------------------
|
||
|
1 H -0.000000 1.000000
|
||
|
2 H 0.000000 1.000000
|
||
|
--------------------------------------------------------
|
||
|
Sum of atomic charges = -0.000000
|
||
|
Sum of spin charges = 2.000000
|
||
|
|
||
|
-----------------------------------------------------------------
|
||
|
Cartesian Multipole Moments
|
||
|
-----------------------------------------------------------------
|
||
|
Charge (ESU x 10^10)
|
||
|
-0.0000
|
||
|
Dipole Moment (Debye)
|
||
|
X 0.0000 Y -0.0000 Z 0.0000
|
||
|
Tot 0.0000
|
||
|
Quadrupole Moments (Debye-Ang)
|
||
|
XX -2.6675 XY -0.0000 YY -2.6675
|
||
|
XZ -0.0000 YZ -0.0000 ZZ -2.8126
|
||
|
Octopole Moments (Debye-Ang^2)
|
||
|
XXX 0.0000 XXY 0.0000 XYY 0.0000
|
||
|
YYY 0.0000 XXZ 0.0000 XYZ -0.0000
|
||
|
YYZ 0.0000 XZZ 0.0000 YZZ -0.0000
|
||
|
ZZZ 0.0000
|
||
|
Hexadecapole Moments (Debye-Ang^3)
|
||
|
XXXX -3.3048 XXXY -0.0000 XXYY -1.1016
|
||
|
XYYY -0.0000 YYYY -3.3048 XXXZ -0.0000
|
||
|
XXYZ -0.0000 XYYZ -0.0000 YYYZ -0.0000
|
||
|
XXZZ -6.2286 XYZZ -0.0000 YYZZ -6.2286
|
||
|
XZZZ -0.0000 YZZZ -0.0000 ZZZZ -34.3917
|
||
|
-----------------------------------------------------------------
|
||
|
Archival summary:
|
||
|
1\1\lcpq-curie.ups-tlse.fr\SP\HF\BasisUnspecified\2(3)\emonino\ThuDec311:48:552020ThuDec311:48:552020\0\\#,HF,BasisUnspecified,\\0,3\H\H,1,2.75\\HF=-0.998626582\\@
|
||
|
|
||
|
Total job time: 4.02s(wall), 3.17s(cpu)
|
||
|
Thu Dec 3 11:48:55 2020
|
||
|
|
||
|
*************************************************************
|
||
|
* *
|
||
|
* Thank you very much for using Q-Chem. Have a nice day. *
|
||
|
* *
|
||
|
*************************************************************
|
||
|
|
||
|
|