2021-01-21 18:12:22 +01:00
|
|
|
|
2021-01-22 16:55:53 +01:00
|
|
|
Running Job 1 of 1 h2_2.70.inp
|
|
|
|
qchem h2_2.70.inp_48453.0 /mnt/beegfs/tmpdir/qchem48453/ 0
|
|
|
|
/share/apps/common/q-chem/5.2.1/exe/qcprog.exe_s h2_2.70.inp_48453.0 /mnt/beegfs/tmpdir/qchem48453/
|
2021-01-21 18:12:22 +01:00
|
|
|
Welcome to Q-Chem
|
|
|
|
A Quantum Leap Into The Future Of Chemistry
|
|
|
|
|
|
|
|
|
|
|
|
Q-Chem 5.2, Q-Chem, Inc., Pleasanton, CA (2019)
|
|
|
|
|
|
|
|
Yihan Shao, Zhengting Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit,
|
|
|
|
J. Kussmann, A. W. Lange, A. Behn, Jia Deng, Xintian Feng, D. Ghosh,
|
|
|
|
M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, T. Kus, A. Landau,
|
|
|
|
Jie Liu, E. I. Proynov, R. M. Richard, R. P. Steele, E. J. Sundstrom,
|
|
|
|
H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire,
|
|
|
|
S. A. Baeppler, D. Barton, Z. Benda, Y. A. Bernard, E. J. Berquist,
|
|
|
|
K. B. Bravaya, H. Burton, D. Casanova, Chun-Min Chang, Yunqing Chen,
|
|
|
|
A. Chien, K. D. Closser, M. P. Coons, S. Coriani, S. Dasgupta,
|
|
|
|
A. L. Dempwolff, M. Diedenhofen, Hainam Do, R. G. Edgar, Po-Tung Fang,
|
|
|
|
S. Faraji, S. Fatehi, Qingguo Feng, K. D. Fenk, J. Fosso-Tande,
|
|
|
|
J. Gayvert, Qinghui Ge, A. Ghysels, G. Gidofalvi, J. Gomes,
|
|
|
|
J. Gonthier, A. Gunina, D. Hait, M. W. D. Hanson-Heine,
|
|
|
|
P. H. P. Harbach, A. W. Hauser, M. F. Herbst, J. E. Herr,
|
|
|
|
E. G. Hohenstein, Z. C. Holden, Kerwin Hui, B. C. Huynh, T.-C. Jagau,
|
|
|
|
Hyunjun Ji, B. Kaduk, K. Khistyaev, Jaehoon Kim, P. Klunzinger, K. Koh,
|
|
|
|
D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, A. Kunitsa,
|
|
|
|
Ka Un Lao, A. Laurent, K. V. Lawler, Joonho Lee, D. Lefrancois,
|
|
|
|
S. Lehtola, D. S. Levine, Yi-Pei Li, You-Sheng Lin, Fenglai Liu,
|
|
|
|
E. Livshits, A. Luenser, P. Manohar, E. Mansoor, S. F. Manzer,
|
|
|
|
Shan-Ping Mao, Yuezhi Mao, N. Mardirossian, A. V. Marenich,
|
|
|
|
T. Markovich, L. A. Martinez-Martinez, S. A. Maurer, N. J. Mayhall,
|
|
|
|
S. C. McKenzie, J.-M. Mewes, P. Morgante, A. F. Morrison,
|
|
|
|
J. W. Mullinax, K. Nanda, T. S. Nguyen-Beck, R. Olivares-Amaya,
|
|
|
|
J. A. Parkhill, Zheng Pei, T. M. Perrine, F. Plasser, P. Pokhilko,
|
|
|
|
S. Prager, A. Prociuk, E. Ramos, D. R. Rehn, F. Rob, M. Scheurer,
|
|
|
|
M. Schneider, N. Sergueev, S. M. Sharada, S. Sharma, D. W. Small,
|
|
|
|
T. Stauch, T. Stein, Yu-Chuan Su, A. J. W. Thom, A. Tkatchenko,
|
|
|
|
T. Tsuchimochi, N. M. Tubman, L. Vogt, M. L. Vidal, O. Vydrov,
|
|
|
|
M. A. Watson, J. Wenzel, M. de Wergifosse, T. A. Wesolowski, A. White,
|
|
|
|
J. Witte, A. Yamada, Jun Yang, K. Yao, S. Yeganeh, S. R. Yost,
|
|
|
|
Zhi-Qiang You, A. Zech, Igor Ying Zhang, Xing Zhang, Yan Zhao,
|
|
|
|
Ying Zhu, B. R. Brooks, G. K. L. Chan, C. J. Cramer, M. S. Gordon,
|
|
|
|
W. J. Hehre, A. Klamt, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,
|
|
|
|
A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, Jeng-Da Chai,
|
|
|
|
A. E. DePrince, III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz,
|
|
|
|
T. R. Furlani, Chao-Ping Hsu, Yousung Jung, Jing Kong, D. S. Lambrecht,
|
|
|
|
WanZhen Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko,
|
|
|
|
J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov,
|
|
|
|
P. M. W. Gill, M. Head-Gordon
|
|
|
|
|
|
|
|
Contributors to earlier versions of Q-Chem not listed above:
|
|
|
|
R. D. Adamson, B. Austin, J. Baker, G. J. O. Beran, K. Brandhorst,
|
|
|
|
S. T. Brown, E. F. C. Byrd, A. K. Chakraborty, C.-L. Cheng,
|
|
|
|
Siu Hung Chien, D. M. Chipman, D. L. Crittenden, H. Dachsel,
|
|
|
|
R. J. Doerksen, A. D. Dutoi, L. Fusti-Molnar, W. A. Goddard III,
|
|
|
|
A. Golubeva-Zadorozhnaya, S. R. Gwaltney, G. Hawkins, A. Heyden,
|
|
|
|
S. Hirata, G. Kedziora, F. J. Keil, C. Kelley, Jihan Kim, R. A. King,
|
|
|
|
R. Z. Khaliullin, P. P. Korambath, W. Kurlancheek, A. M. Lee, M. S. Lee,
|
|
|
|
S. V. Levchenko, Ching Yeh Lin, D. Liotard, R. C. Lochan, I. Lotan,
|
|
|
|
P. E. Maslen, N. Nair, D. P. O'Neill, D. Neuhauser, E. Neuscamman,
|
|
|
|
C. M. Oana, R. Olson, B. Peters, R. Peverati, P. A. Pieniazek,
|
|
|
|
Y. M. Rhee, J. Ritchie, M. A. Rohrdanz, E. Rosta, N. J. Russ,
|
|
|
|
H. F. Schaefer III, N. E. Schultz, N. Shenvi, A. C. Simmonett, A. Sodt,
|
|
|
|
D. Stuck, K. S. Thanthiriwatte, V. Vanovschi, Tao Wang, A. Warshel,
|
|
|
|
C. F. Williams, Q. Wu, X. Xu, W. Zhang
|
|
|
|
|
|
|
|
Please cite Q-Chem as follows:
|
|
|
|
Y. Shao et al., Mol. Phys. 113, 184-215 (2015)
|
|
|
|
DOI: 10.1080/00268976.2014.952696
|
|
|
|
|
|
|
|
Q-Chem 5.2.1 for Intel X86 EM64T Linux
|
|
|
|
|
|
|
|
Parts of Q-Chem use Armadillo 8.300.2 (Tropical Shenanigans).
|
|
|
|
http://arma.sourceforge.net/
|
|
|
|
|
2021-01-22 16:55:53 +01:00
|
|
|
Q-Chem begins on Fri Jan 22 16:44:36 2021
|
2021-01-21 18:12:22 +01:00
|
|
|
|
|
|
|
Host:
|
|
|
|
0
|
|
|
|
|
2021-01-22 16:55:53 +01:00
|
|
|
Scratch files written to /mnt/beegfs/tmpdir/qchem48453//
|
2021-01-21 18:12:22 +01:00
|
|
|
Jul1719 |scratch|qcdevops|jenkins|workspace|build_RNUM 6358
|
|
|
|
Processing $rem in /share/apps/common/q-chem/5.2.1/config/preferences:
|
|
|
|
MEM_TOTAL 5000
|
|
|
|
NAlpha2: 4
|
|
|
|
NElect 2
|
|
|
|
Mult 3
|
|
|
|
|
|
|
|
Checking the input file for inconsistencies... ...done.
|
|
|
|
|
|
|
|
--------------------------------------------------------------
|
|
|
|
User input:
|
|
|
|
--------------------------------------------------------------
|
|
|
|
$comment
|
|
|
|
SF-CIS
|
|
|
|
$end
|
|
|
|
|
|
|
|
$molecule
|
|
|
|
0 3
|
|
|
|
H 0 0 0
|
|
|
|
H 0 0 2.70
|
|
|
|
$end
|
|
|
|
|
|
|
|
$rem
|
|
|
|
JOBTYPE = sp
|
|
|
|
METHOD = HF
|
|
|
|
BASIS = CC-PVQZ
|
|
|
|
PURECART = 2222
|
|
|
|
SCF_CONVERGENCE = 9
|
|
|
|
THRESH = 12
|
|
|
|
MAX_SCF_CYCLES = 100
|
|
|
|
MAX_CIS_CYCLES = 100
|
|
|
|
SPIN_FLIP = TRUE
|
|
|
|
UNRESTRICTED = TRUE
|
|
|
|
CIS_N_ROOTS = 20
|
|
|
|
RPA = FALSE
|
|
|
|
$end
|
|
|
|
--------------------------------------------------------------
|
|
|
|
----------------------------------------------------------------
|
|
|
|
Standard Nuclear Orientation (Angstroms)
|
|
|
|
I Atom X Y Z
|
|
|
|
----------------------------------------------------------------
|
|
|
|
1 H 0.0000000000 0.0000000000 -1.3500000000
|
|
|
|
2 H 0.0000000000 0.0000000000 1.3500000000
|
|
|
|
----------------------------------------------------------------
|
|
|
|
Molecular Point Group D*h NOp =***
|
|
|
|
Largest Abelian Subgroup D2h NOp = 1
|
|
|
|
Nuclear Repulsion Energy = 0.19599156 hartrees
|
|
|
|
There are 2 alpha and 0 beta electrons
|
|
|
|
|
|
|
|
Q-Chem warning in module forms1/BasisType.C, line 1983:
|
|
|
|
|
|
|
|
You are not using the predefined 5D/6D in this basis set.
|
|
|
|
|
|
|
|
Requested basis set is cc-pVQZ
|
|
|
|
There are 20 shells and 70 basis functions
|
|
|
|
|
|
|
|
Total QAlloc Memory Limit 5000 MB
|
|
|
|
Mega-Array Size 188 MB
|
|
|
|
MEM_STATIC part 192 MB
|
|
|
|
|
|
|
|
Distance Matrix (Angstroms)
|
|
|
|
H ( 1)
|
|
|
|
H ( 2) 2.700000
|
|
|
|
|
|
|
|
A cutoff of 1.0D-12 yielded 205 shell pairs
|
|
|
|
There are 2634 function pairs
|
|
|
|
Smallest overlap matrix eigenvalue = 1.73E-03
|
|
|
|
|
|
|
|
Scale SEOQF with 1.000000e+00/1.000000e+00/1.000000e+00
|
|
|
|
|
|
|
|
Standard Electronic Orientation quadrupole field applied
|
|
|
|
Nucleus-field energy = -0.0000000039 hartrees
|
|
|
|
Guess from superposition of atomic densities
|
|
|
|
Warning: Energy on first SCF cycle will be non-variational
|
|
|
|
SAD guess density has 0.090382 electrons
|
|
|
|
|
|
|
|
-----------------------------------------------------------------------
|
|
|
|
General SCF calculation program by
|
|
|
|
Eric Jon Sundstrom, Paul Horn, Yuezhi Mao, Dmitri Zuev, Alec White,
|
|
|
|
David Stuck, Shaama M.S., Shane Yost, Joonho Lee, David Small,
|
|
|
|
Daniel Levine, Susi Lehtola, Hugh Burton, Evgeny Epifanovsky,
|
|
|
|
Bang C. Huynh
|
|
|
|
-----------------------------------------------------------------------
|
|
|
|
Hartree-Fock
|
|
|
|
A unrestricted SCF calculation will be
|
|
|
|
performed using DIIS
|
|
|
|
SCF converges when DIIS error is below 1.0e-09
|
|
|
|
---------------------------------------
|
|
|
|
Cycle Energy DIIS error
|
|
|
|
---------------------------------------
|
|
|
|
1 0.1354230535 7.97e-04
|
|
|
|
2 24.9496137496 2.04e-01
|
|
|
|
3 24.8886107152 2.04e-01
|
|
|
|
4 24.8929512249 2.04e-01
|
|
|
|
5 24.8816174331 2.04e-01
|
|
|
|
6 24.8811515898 2.04e-01
|
|
|
|
7 24.8850276748 2.04e-01
|
|
|
|
8 24.8822665259 2.04e-01
|
|
|
|
9 24.8760380349 2.04e-01
|
|
|
|
10 24.9049119899 2.04e-01
|
|
|
|
11 24.9111275295 2.04e-01
|
|
|
|
12 24.9145999599 2.04e-01
|
|
|
|
13 24.9933475047 2.04e-01
|
|
|
|
14 25.0286421155 2.04e-01
|
|
|
|
15 25.1360803562 2.04e-01
|
|
|
|
16 25.2641770097 2.03e-01
|
|
|
|
17 -0.9758716776 2.61e-03
|
|
|
|
18 -0.9978126839 3.45e-04
|
|
|
|
19 -0.9984094987 5.76e-05
|
|
|
|
20 -0.9984281082 7.47e-06
|
|
|
|
21 -0.9984285314 3.36e-07
|
|
|
|
22 -0.9984285320 3.77e-08
|
|
|
|
23 -0.9984285320 7.15e-09
|
|
|
|
24 -0.9984285320 1.22e-09
|
|
|
|
25 -0.9984285320 3.22e-11 Convergence criterion met
|
|
|
|
---------------------------------------
|
|
|
|
SCF time: CPU 2.19s wall 2.00s
|
|
|
|
<S^2> = 2.000000000
|
|
|
|
SCF energy in the final basis set = -0.9984285320
|
|
|
|
Total energy in the final basis set = -0.9984285320
|
|
|
|
|
|
|
|
Spin-flip UCIS calculation will be performed
|
|
|
|
CIS energy converged when residual is below 10e- 6
|
|
|
|
---------------------------------------------------
|
|
|
|
Iter Rts Conv Rts Left Ttl Dev Max Dev
|
|
|
|
---------------------------------------------------
|
|
|
|
1 0 20 0.096335 0.008343
|
|
|
|
2 0 20 0.006829 0.000733
|
|
|
|
3 2 18 0.000294 0.000037
|
|
|
|
4 20 0 0.000004 0.000000 Roots Converged
|
|
|
|
---------------------------------------------------
|
|
|
|
|
|
|
|
---------------------------------------------------
|
|
|
|
SF-CIS Excitation Energies
|
|
|
|
(The first "excited" state might be the ground state)
|
|
|
|
---------------------------------------------------
|
|
|
|
|
|
|
|
Excited state 1: excitation energy (eV) = -0.1004
|
|
|
|
Total energy for state 1: -1.00211964 au
|
|
|
|
<S**2> : 0.0003
|
|
|
|
S( 1) --> S( 2) amplitude = -0.5481 alpha
|
|
|
|
S( 1) --> V( 2) amplitude = 0.2908 alpha
|
|
|
|
S( 2) --> S( 1) amplitude = 0.7068 alpha
|
|
|
|
S( 2) --> V( 1) amplitude = 0.3109 alpha
|
|
|
|
|
|
|
|
Excited state 2: excitation energy (eV) = -0.0000
|
|
|
|
Total energy for state 2: -0.99842853 au
|
|
|
|
<S**2> : 2.0000
|
|
|
|
S( 1) --> S( 1) amplitude = 0.6351 alpha
|
|
|
|
S( 1) --> V( 1) amplitude = 0.2914 alpha
|
|
|
|
S( 2) --> S( 2) amplitude = -0.6258 alpha
|
|
|
|
S( 2) --> V( 2) amplitude = 0.3193 alpha
|
|
|
|
|
|
|
|
Excited state 3: excitation energy (eV) = 9.6241
|
|
|
|
Total energy for state 3: -0.64475115 au
|
|
|
|
<S**2> : 0.2145
|
|
|
|
S( 1) --> S( 1) amplitude = 0.7238 alpha
|
|
|
|
S( 1) --> V( 3) amplitude = -0.1875 alpha
|
|
|
|
S( 2) --> S( 2) amplitude = 0.6543 alpha
|
|
|
|
|
|
|
|
Excited state 4: excitation energy (eV) = 9.7325
|
|
|
|
Total energy for state 4: -0.64076730 au
|
|
|
|
<S**2> : 0.2544
|
|
|
|
S( 1) --> S( 2) amplitude = 0.6662 alpha
|
|
|
|
S( 1) --> V( 2) amplitude = -0.1879 alpha
|
|
|
|
S( 2) --> S( 1) amplitude = 0.6796 alpha
|
|
|
|
S( 2) --> V( 3) amplitude = -0.1969 alpha
|
|
|
|
|
|
|
|
Excited state 5: excitation energy (eV) = 12.8674
|
|
|
|
Total energy for state 5: -0.52556118 au
|
|
|
|
<S**2> : 0.9991
|
|
|
|
S( 1) --> S( 1) amplitude = -0.2511 alpha
|
|
|
|
S( 1) --> V( 1) amplitude = 0.5764 alpha
|
|
|
|
S( 2) --> S( 2) amplitude = 0.3733 alpha
|
|
|
|
S( 2) --> V( 2) amplitude = 0.6589 alpha
|
|
|
|
|
|
|
|
Excited state 6: excitation energy (eV) = 12.9519
|
|
|
|
Total energy for state 6: -0.52245381 au
|
|
|
|
<S**2> : 0.9627
|
|
|
|
S( 1) --> S( 2) amplitude = 0.4423 alpha
|
|
|
|
S( 1) --> V( 2) amplitude = 0.5123 alpha
|
|
|
|
S( 2) --> S( 1) amplitude = -0.1836 alpha
|
|
|
|
S( 2) --> V( 1) amplitude = 0.6866 alpha
|
|
|
|
|
|
|
|
Excited state 7: excitation energy (eV) = 16.0653
|
|
|
|
Total energy for state 7: -0.40803785 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 7) amplitude = -0.5598 alpha
|
|
|
|
S( 2) --> V( 5) amplitude = 0.8243 alpha
|
|
|
|
|
|
|
|
Excited state 8: excitation energy (eV) = 16.0653
|
|
|
|
Total energy for state 8: -0.40803785 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 6) amplitude = 0.5598 alpha
|
|
|
|
S( 2) --> V( 4) amplitude = 0.8243 alpha
|
|
|
|
|
|
|
|
Excited state 9: excitation energy (eV) = 16.1296
|
|
|
|
Total energy for state 9: -0.40567694 au
|
|
|
|
<S**2> : 0.9176
|
|
|
|
S( 1) --> S( 2) amplitude = 0.2196 alpha
|
|
|
|
S( 1) --> V( 8) amplitude = -0.3155 alpha
|
|
|
|
S( 2) --> V( 3) amplitude = 0.9108 alpha
|
|
|
|
|
|
|
|
Excited state 10: excitation energy (eV) = 16.2966
|
|
|
|
Total energy for state 10: -0.39954130 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 5) amplitude = 0.7342 alpha
|
|
|
|
S( 2) --> V( 7) amplitude = -0.6733 alpha
|
|
|
|
|
|
|
|
Excited state 11: excitation energy (eV) = 16.2966
|
|
|
|
Total energy for state 11: -0.39954130 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 4) amplitude = 0.7342 alpha
|
|
|
|
S( 2) --> V( 6) amplitude = 0.6733 alpha
|
|
|
|
|
|
|
|
Excited state 12: excitation energy (eV) = 16.8494
|
|
|
|
Total energy for state 12: -0.37922601 au
|
|
|
|
<S**2> : 0.9277
|
|
|
|
S( 1) --> V( 3) amplitude = 0.8943 alpha
|
|
|
|
S( 2) --> S( 2) amplitude = 0.1921 alpha
|
|
|
|
S( 2) --> V( 8) amplitude = -0.3754 alpha
|
|
|
|
|
|
|
|
Excited state 13: excitation energy (eV) = 18.6408
|
|
|
|
Total energy for state 13: -0.31339167 au
|
|
|
|
<S**2> : 0.8787
|
|
|
|
S( 1) --> V( 1) amplitude = 0.7478 alpha
|
|
|
|
S( 2) --> V( 2) amplitude = -0.6515 alpha
|
|
|
|
|
|
|
|
Excited state 14: excitation energy (eV) = 18.7151
|
|
|
|
Total energy for state 14: -0.31066135 au
|
|
|
|
<S**2> : 0.8850
|
|
|
|
S( 1) --> V( 2) amplitude = 0.7637 alpha
|
|
|
|
S( 2) --> V( 1) amplitude = -0.6260 alpha
|
|
|
|
|
|
|
|
Excited state 15: excitation energy (eV) = 23.3617
|
|
|
|
Total energy for state 15: -0.13990049 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 5) amplitude = 0.6768 alpha
|
|
|
|
S( 2) --> V( 7) amplitude = 0.7358 alpha
|
|
|
|
|
|
|
|
Excited state 16: excitation energy (eV) = 23.3617
|
|
|
|
Total energy for state 16: -0.13990049 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 4) amplitude = -0.6768 alpha
|
|
|
|
S( 2) --> V( 6) amplitude = 0.7358 alpha
|
|
|
|
|
|
|
|
Excited state 17: excitation energy (eV) = 23.6415
|
|
|
|
Total energy for state 17: -0.12961982 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 7) amplitude = 0.8254 alpha
|
|
|
|
S( 2) --> V( 5) amplitude = 0.5636 alpha
|
|
|
|
|
|
|
|
Excited state 18: excitation energy (eV) = 23.6415
|
|
|
|
Total energy for state 18: -0.12961982 au
|
|
|
|
<S**2> : 1.0000
|
|
|
|
S( 1) --> V( 6) amplitude = 0.8254 alpha
|
|
|
|
S( 2) --> V( 4) amplitude = -0.5636 alpha
|
|
|
|
|
|
|
|
Excited state 19: excitation energy (eV) = 25.6626
|
|
|
|
Total energy for state 19: -0.05534545 au
|
|
|
|
<S**2> : 0.9929
|
|
|
|
S( 1) --> V( 3) amplitude = 0.3757 alpha
|
|
|
|
S( 2) --> V( 8) amplitude = 0.9145 alpha
|
|
|
|
|
|
|
|
Excited state 20: excitation energy (eV) = 26.5511
|
|
|
|
Total energy for state 20: -0.02269484 au
|
|
|
|
<S**2> : 0.9931
|
|
|
|
S( 1) --> V( 8) amplitude = 0.9356 alpha
|
|
|
|
S( 2) --> V( 3) amplitude = 0.3145 alpha
|
|
|
|
|
|
|
|
---------------------------------------------------
|
|
|
|
SETman timing summary (seconds)
|
|
|
|
CPU time 0.98s
|
|
|
|
System time 0.00s
|
2021-01-22 16:55:53 +01:00
|
|
|
Wall time 1.30s
|
2021-01-21 18:12:22 +01:00
|
|
|
|
|
|
|
--------------------------------------------------------------
|
|
|
|
|
|
|
|
Orbital Energies (a.u.)
|
|
|
|
--------------------------------------------------------------
|
|
|
|
|
|
|
|
Alpha MOs
|
|
|
|
-- Occupied --
|
|
|
|
-0.5204 -0.4802
|
|
|
|
-- Virtual --
|
|
|
|
0.2430 0.2593 0.3951 0.4473 0.4473 0.5105 0.5105 0.6807
|
|
|
|
1.0772 1.1691 1.7920 1.7920 1.8359 1.8488 1.8544 1.8544
|
|
|
|
2.0580 2.0580 2.0587 2.0673 2.0673 2.0697 2.0697 2.0942
|
|
|
|
2.0942 2.3376 3.0525 3.0964 4.4126 4.4126 4.4583 4.4583
|
|
|
|
4.5149 4.5302 6.0558 6.0558 6.0558 6.0558 6.0560 6.0560
|
|
|
|
6.0560 6.0560 6.0560 6.0560 6.0565 6.0565 6.0612 6.0711
|
|
|
|
8.0957 8.1129 8.1129 8.1215 8.1215 8.1229 8.1229 8.1343
|
|
|
|
8.1343 8.2297 9.6335 9.6614 9.6940 9.6940 9.7136 9.7136
|
|
|
|
9.7450 9.7624 22.4685 22.5756
|
|
|
|
--------------------------------------------------------------
|
|
|
|
|
|
|
|
Ground-State Mulliken Net Atomic Charges
|
|
|
|
|
|
|
|
Atom Charge (a.u.) Spin (a.u.)
|
|
|
|
--------------------------------------------------------
|
|
|
|
1 H -0.000000 1.000000
|
|
|
|
2 H 0.000000 1.000000
|
|
|
|
--------------------------------------------------------
|
|
|
|
Sum of atomic charges = -0.000000
|
|
|
|
Sum of spin charges = 2.000000
|
|
|
|
|
|
|
|
-----------------------------------------------------------------
|
|
|
|
Cartesian Multipole Moments
|
|
|
|
-----------------------------------------------------------------
|
|
|
|
Charge (ESU x 10^10)
|
|
|
|
-0.0000
|
|
|
|
Dipole Moment (Debye)
|
|
|
|
X 0.0000 Y 0.0000 Z 0.0000
|
|
|
|
Tot 0.0000
|
|
|
|
Quadrupole Moments (Debye-Ang)
|
|
|
|
XX -2.6650 XY 0.0000 YY -2.6650
|
|
|
|
XZ 0.0000 YZ 0.0000 ZZ -2.8257
|
|
|
|
Octopole Moments (Debye-Ang^2)
|
|
|
|
XXX -0.0000 XXY 0.0000 XYY -0.0000
|
|
|
|
YYY 0.0000 XXZ 0.0000 XYZ 0.0000
|
|
|
|
YYZ 0.0000 XZZ 0.0000 YZZ 0.0000
|
|
|
|
ZZZ 0.0000
|
|
|
|
Hexadecapole Moments (Debye-Ang^3)
|
|
|
|
XXXX -3.2981 XXXY 0.0000 XXYY -1.0994
|
|
|
|
XYYY 0.0000 YYYY -3.2981 XXXZ 0.0000
|
|
|
|
XXYZ 0.0000 XYYZ 0.0000 YYYZ 0.0000
|
|
|
|
XXZZ -6.0487 XYZZ -0.0000 YYZZ -6.0487
|
|
|
|
XZZZ 0.0000 YZZZ 0.0000 ZZZZ -33.3419
|
|
|
|
-----------------------------------------------------------------
|
|
|
|
Archival summary:
|
2021-01-22 16:55:53 +01:00
|
|
|
1\1\lcpq-curie.ups-tlse.fr\SP\HF\BasisUnspecified\2(3)\emonino\FriJan2216:44:402021FriJan2216:44:402021\0\\#,HF,BasisUnspecified,\\0,3\H\H,1,2.7\\HF=-0.998428532\\@
|
2021-01-21 18:12:22 +01:00
|
|
|
|
2021-01-22 16:55:53 +01:00
|
|
|
Total job time: 3.85s(wall), 3.29s(cpu)
|
|
|
|
Fri Jan 22 16:44:40 2021
|
2021-01-21 18:12:22 +01:00
|
|
|
|
|
|
|
*************************************************************
|
|
|
|
* *
|
|
|
|
* Thank you very much for using Q-Chem. Have a nice day. *
|
|
|
|
* *
|
|
|
|
*************************************************************
|
|
|
|
|
|
|
|
|