ccl
This commit is contained in:
parent
cc3008b9f1
commit
4d1de56624
20
dynker.tex
20
dynker.tex
@ -641,15 +641,15 @@ In the case of BSE2, the perturbative partitioning is simply
|
|||||||
\begin{tabular}{|c|ccccccc|c|}
|
\begin{tabular}{|c|ccccccc|c|}
|
||||||
Singlets & BSE2 & pBSE2 & pBSE2(dTDA) & dBSE2 & BSE2(TDA) & pBSE2(TDA) & dBSE2(TDA) & Exact \\
|
Singlets & BSE2 & pBSE2 & pBSE2(dTDA) & dBSE2 & BSE2(TDA) & pBSE2(TDA) & dBSE2(TDA) & Exact \\
|
||||||
\hline
|
\hline
|
||||||
$\omega_1$ & 1.84903 & 1.90940 & 1.90950 & 1.90362 & 1.86299 & 1.92356 & 1.92359 & 1.92145 \\
|
$\omega_1^{\updw}$ & 1.84903 & 1.90940 & 1.90950 & 1.90362 & 1.86299 & 1.92356 & 1.92359 & 1.92145 \\
|
||||||
$\omega_2$ & & & & & & & & \\
|
$\omega_2^{\updw}$ & & & & & & & & \\
|
||||||
$\omega_3$ & & & & 4.47124 & & & 4.47097 & 3.47880 \\
|
$\omega_3^{\updw}$ & & & & 4.47124 & & & 4.47097 & 3.47880 \\
|
||||||
\hline
|
\hline
|
||||||
Triplets & BSE2 & pBSE2 & pBSE2(dTDA) & dBSE2 & BSE2(TDA) & pBSE2(TDA) & dBSE2(TDA) & Exact \\
|
Triplets & BSE2 & pBSE2 & pBSE2(dTDA) & dBSE2 & BSE2(TDA) & pBSE2(TDA) & dBSE2(TDA) & Exact \\
|
||||||
\hline
|
\hline
|
||||||
$\omega_1$ & 1.38912 & 1.44285 & 1.44304 & 1.42564 & 1.40765 & 1.46154 & 1.46155 & 1.47085 \\
|
$\omega_1^{\upup}$ & 1.38912 & 1.44285 & 1.44304 & 1.42564 & 1.40765 & 1.46154 & 1.46155 & 1.47085 \\
|
||||||
$\omega_2$ & & & & & & & & \\
|
$\omega_2^{\upup}$ & & & & & & & & \\
|
||||||
$\omega_3$ & & & & 4.47797 & & & 4.47767 & \\
|
$\omega_3^{\upup}$ & & & & 4.47797 & & & 4.47767 & \\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{ruledtabular}
|
\end{ruledtabular}
|
||||||
\end{table*}
|
\end{table*}
|
||||||
@ -720,9 +720,13 @@ For the double excitation, dBSE2 yields a slightly better energy, yet still in q
|
|||||||
%\end{gather}
|
%\end{gather}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Take-home messages}
|
\section{Take-home message}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
What have we learned here?
|
The take-home message of the present paper is that dynamical kernels have much more to give that one would think.
|
||||||
|
In more scientific terms, dynamical kernels can provide, thanks to their frequency-dependent nature, additional excitations that can be associated to higher-order excitations (such as the infamous double excitations).
|
||||||
|
However, they sometimes give too much, and generate spurious excitations, \ie, excitation which does not corresponds to any physical excited state.
|
||||||
|
The appearance of these factitious excitations is due to the approximate nature of the dynamical kernel.
|
||||||
|
Moreover, because of the non-linear character of the linear response problem when one employs a dynamical kernel, it is computationally more involved to access these extra excitations.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\acknowledgements{
|
\acknowledgements{
|
||||||
|
Loading…
Reference in New Issue
Block a user