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1 Geometry

The geometry of benzene used in our study is the MP2/6-31G∗ optimized structure from

Ref. S1, cf. Table S1. For reference, the nuclear repulsion and Hartree-Fock energies are

Enuc = 203.15350971 EH and EHF = −230.721819131 EH, respectively.

Table S1: C6H6 (in Å).

Atom x y z

C 0.000000 1.396792 0.000000
C 0.000000 −1.396792 0.000000
C 1.209657 0.698396 0.000000
C −1.209657 −0.698396 0.000000
C −1.209657 0.698396 0.000000
C 1.209657 −0.698396 0.000000
H 0.000000 2.484212 0.000000
H 2.151390 1.242106 0.000000
H −2.151390 −1.242106 0.000000
H −2.151390 1.242106 0.000000
H 2.151390 −1.242106 0.000000
H 0.000000 −2.484212 0.000000

2 Main Results

Table S2 summarizes the results of the blind-challenge calculations shown in Fig. 1 of the

main text. Methods are ordered by the final correlation energy.

Table S2: Summary of Fig. 1 from the main text.

Method ∆E/mEH

ASCI −860.0
iCI −861.1
CCSDTQ −862.4
DMRG −862.8
FCCR −863.0
MBE-FCI −863.0
CAD-FCIQMC −863.4
AS-FCIQMC −863.7
SHCI −864.2
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Figure S1: MBE-FCI results.

In MBE-FCI theory,S2–S5 the complete set of MOs for a given system is divided into a

reference space and an expansion space. An MBE-FCI expansion in the latter of these spaces

hence recovers the residual correlation not captured by an FCI calculation constrained to

the former. The MBE-FCI calculation of the present work is presented in Figure S1, as per-

formed in an embarrassingly parallel manner using the open-source PyMBE codeS6 on Intel

Xeon E5-2697v4 (Broadwell) hardware (36 cores @ 2.3 GHz, 3.56 GB/core). The calcu-

lation was performed in a basis of localized Pipek-Mezey MOsS7 with a (6e,6o) reference

space consisting of the π- and π∗-orbitals and electrons. The final correlation energy is

∆EMBE-FCI = −863.03 mEH.

In the course of preparing the code for running high-accuracy MBE-FCI calculations on

the benzene molecule, a new screening protocol was implemented. At each order, MOs are

screened away from the full expansion space according to their relative (absolute) magnitude,

which in turn leads to a reduced number of increment calculations at the orders to follow.
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Specifically, only the MOs of the expansion space (at any given order) that give rise to the

numerically largest increments will be retained at the following order. For the calculation

of the present work, the percentages of the expansion space retained (aretain) alongside the

number of individual CASCI calculations at any given order (KCASCI) are presented in Table

S3. In addition, a number of optimizations were made to the code base. Most crucially, a new

pruning scheme was introduced to make sure that only non-redundant increments are stored

in memory throughout the total MBE-FCI calculation. For instance, once the ith MO gets

screened away from the expansion space, all increments at lower orders, which reference this

MO, are not needed anymore and may thus be pruned. This allows for significantly larger

problem sizes to be treated by the method. As such, the limiting factor in converging MBE-

FCI even tighter for the problem at hand, that is, screening less throughout the expansion,

is related to available computer ressources rather than physical memory.

Table S3: MBE-FCI calculation details.

Order aretain/% ∆E/mEH KCASCI

1 100.0 −95.1132 102
2 100.0 −469.884 5,151
3 100.0 −715.265 171,700
4 100.0 −876.637 4,249,575
5 100.0 −876.624 83,291,670
6 50.0 −862.988 1,346,548,665
7 25.0 −863.027 115,775,100
8 12.5 −863.027 495

4 DMRG

For details on DMRG theory, please see a number of contemporary reviews on the topic.S8–S10

All DMRG calculations were performed using an unmodified version of the BLOCK code

(v1.5),S11–S15 executed through the PySCF program,S16–S18 on Intel Xeon CPU E5-2680v4

(28-36 cores @ 2.4 GHz, 9.85 GB/core) and Xeon Gold 6130 (32 cores @ 2.1 GHz, 6.0 GB/-

core) nodes. Calculations were run in parallel on 100-200 cores. Maximum total memory
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usage was estimated at 1.15 Tb in total across all cores; this includes replicated data on

the cores. We used the standard procedures described in Ref. S15, including (i) Edminston-

Ruedenberg split-localization of orbitals,S19 (ii) and the use of the genetic algorithm option

in BLOCK to order the orbitals. The forward schedule was carried out up to a maximum bond

dimension of M = 7000, then the backward schedule was carried out to obtain fully con-

verged results for extrapolation back down to M = 1000. We obtained our initial integral file

from the Umrigar group for the blind challenge and used these for the DMRG calculations.

As we found out subsequently, the integral file corresponded to optimized SHCI orbitals.

As this makes the results more complicated to reproduce, we provide the full integral file

at https://github.com/seunghoonlee89/SI-benzene-paper-DMRG. We also verified on

some smaller runs that using CCSD natural orbitals gave similar energies. The results from

the backwards schedule of DMRG are listed in Table S4.

Table S4: DMRG correlation energy (E in mEH) and discarded weights (w) with the
backwards schedule.

M 1000 2000 3000 4000 5000 6000 ∞

w 5.3× 10−5 2.9× 10−5 2.1× 10−5 1.6× 10−5 1.3× 10−5 1.0× 10−5

E −844.9 −852.9 −855.9 −857.5 −858.5 −859.2 −862.8(7)

DMRG yields two separate results: a variational upper bound and an extrapolated num-

ber based on the different bond dimensions. The lowest variational correlation energy is

∆EDMRG(var) = −859.5 mEH, corresponding to the M = 7000 result from the partially con-

verged forwards schedule. The linear extrapolation was based on using the fully converged

backwards schedule results for M = 6000 to M = 1000 (the variational M = 6000 result

was −859.2 mEH) giving a final number of ∆EDMRG(∞) = −862.8 mEH, cf. Figure S2. The

standard practice in DMRG for estimating an error from the extrapolation is to report a

fraction of the extrapolation distance, typically 1/5. Here, the estimate (1/5 extrapolation

distance error metric) is 0.7 mEH. The error of the linear fit (std. dev. of the intercept) is
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about 0.2 mEH, suggesting the 1/5 extrapolation distance error is an overestimate.
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Figure S2: DMRG results.

5 AS-FCIQMC

For details on the adaptive shift formalism, please see Ref. S20. All AS-FCIQMC calculations

were performed using the NECI codeS21,S22 in parallel on Intel Xeon CPU E5-2698v4 nodes (40

cores @ 2.2 GHz, 6.4 GB/core). The orbitals used were those of a preceding RHF calculation

and the FCIQMC runs were performed in a basis of pure Slater determinants (no spin

adaptation). Following an equilibration run with 1.0× 108 walkers (yielding a correlation

energy of ∆EAS-FCIQMC(init) = −863.3 ± 0.9 mEH), a first calculation with 1.0× 109 (1B)

walkers (growing from 1.0× 108) yielded a correlation energy ∆EAS-FCIQMC(1B) = −864.8±0.5

mEH. Next, a second calculation with 2.0× 109 (2B) walkers (growing from 1.0× 109)

resulted in a correlation energy of ∆EAS-FCIQMC(2B) = −863.7 ± 0.3 mEH. The stochastic

error bar of 0.3 mEH is derived by averaging over the last 2637 time steps (discarding the first

5000 time steps for walker growth and equilibration period), and doing a blocking analysis.
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The AS-FCIQMC(2B) result is used in Fig. 1 of the main text. For the largest AS-FCIQMC

calculations (2B), the NECI code used 2.6 GB/core, i.e., 3162 Gb in total distributed over 32

nodes (40 cores/node).

6 CAD-FCIQMC

The CAD-FCIQMC approach, introduced in Ref. S23, belongs to a new category of semi-

stochastic methods, in which information about higher-order wave function components ex-

tracted from the FCIQMCS20,S24,S25 or CCMCS26,S27 propagations is read into deterministic

CC computations.S23,S28–S30 CAD-FCIQMC can also be classified as an externally corrected

CC method.S31–S39 We recall that all externally corrected CC approaches are based on the

observation that as long as the Hamiltonian does not contain higher–than–two-body interac-

tions, the CC amplitude equations projected on the singly and doubly excited determinants,

in which no approximations are made, do not engage higher–than–four-body components of

the cluster operator T . Thus, by solving these equations for the singly and doubly excited

clusters, T1 and T2, respectively, in the presence of their exact triply (T3) and quadruply

(T4) excited counterparts extracted from FCI, one obtains the exact T1 and T2 and the exact

correlation energy, which is given by the expression

∆E = 〈Φ| [HN exp(T1 + T2)]C |Φ〉, (1)

where HN = H − 〈Φ|H|Φ〉 is the Hamiltonian in the normal-ordered form relative to the

reference determinant |Φ〉 and the subscript C designates the connected operator product.

This means that by using a well-behaved source of the T3 and T4 clusters, capable of offer-

ing their accurate description for the N -electron system of interest, one can obtain highly

accurate T1, T2, and ∆E. In the case of CAD-FCIQMC, this well-behaved source is the

FCIQMC wave function |Ψ(MC)(τ)〉 obtained at a sufficiently long propagation time τ , which

converges to the corresponding FCI ground state as τ approaches ∞.
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In order to extract the desired triply and quadruply excited clusters from the FCIQMC

state |Ψ(MC)(τ)〉, we rewrite it to satisfy the intermediate normalization as

|Ψ(MC)(τ)〉 = [1 + C(MC)(τ)]|Φ〉 ≡

[
1 +

N∑
n=1

C(MC)
n (τ)

]
|Φ〉, (2)

where C
(MC)
n (τ) are the CI excitation operators determined by counting walkers at the n-

tuply excited determinants contributing to |Ψ(MC)(τ)〉 (dividing the numbers of these walkers

by the number of walkers at |Φ〉), replace Eq. (2) by the equivalent exponential ansatz,

|Ψ(MC)(τ)〉 = exp[T (MC)(τ)]|Φ〉 ≡ exp

[
N∑

n=1

T (MC)
n (τ)

]
|Φ〉, (3)

where T (MC)(τ) is defined as ln[1+C(MC)(τ)], and exploit the resulting relationships between

the CI excitation operators C
(MC)
n (τ) and their CC counterparts T

(MC)
n (τ) (see Ref. S23).

Assuming that |Ψ(MC)(τ)〉 converges to the FCI wave function as τ increases, by solving

the CC amplitude equations projected on the singly and doubly excited determinants, |Φa
i 〉

and |Φab
ij 〉, respectively, in which T3 and T4 are replaced by their T

(MC)
3 (τ) and T

(MC)
4 (τ)

counterparts obtained from the cluster analysis of |Ψ(MC)(τ)〉, i.e.,

〈Φa
i |
[
HN exp(T1 + T2 + T

(MC)
3 (τ))

]
C
|Φ〉 = 0,

〈Φab
ij |

[
HN exp(T1 + T2 + T

(MC)
3 (τ) + T

(MC)
4 (τ))

]
C
|Φ〉 = 0,

(4)

for the singly and doubly excited clusters T1 and T2, we are guaranteed to obtain the exact T1

and T2 and thus the exact, FCI, correlation energy in the τ =∞ limit. In other words, if the

walker population and propagation time τ used to generate the FCIQMC state |Ψ(MC)(τ)〉

are large enough, so that T
(MC)
3 (τ) and T

(MC)
4 (τ) extracted from |Ψ(MC)(τ)〉 and T1 and T2

obtained by solving the CC system defined by Eq. (4) are good approximations to their

exact, FCI or FCC, values, the CAD-FCIQMC correlation energy calculated using Eq. (1)

is anticipated to be a very accurate approximation to its FCI counterpart. The numerical

S-9



evidence reported in Ref. S23 shows that this is indeed the case. It is worth noting that one

does not have to process the entire FCIQMC wave function |Ψ(MC)(τ)〉 to determine T
(MC)
3 (τ)

and T
(MC)
4 (τ) entering Eq. (4); all one needs to know are the CI excitation amplitudes through

quadruples defining the C
(MC)
n (τ) operators with n = 1–4.

As shown in Ref. S23, by considering the CC system given by Eq. (4) and by solving

it for T1 and T2 deterministically, the CAD-FCIQMC approach can substantially accelerate

the purely stochastic FCIQMC calculations. It also offers an interesting diagnostic of the

quality of the instantaneous FCIQMC wave function |Ψ(MC)(τ)〉 obtained at a given time τ ,

especially of its C
(MC)
n (τ) components through n = 4, using computational steps that are

similar to those characterizing the conventional CCSD methodS40 once the cluster analysis

of |Ψ(MC)(τ)〉, needed to determine T
(MC)
3 (τ) and T

(MC)
4 (τ), is completed. The latter feature

is particularly useful in the context of the present study. Indeed, if in the process of solving

the CC amplitude equations defined by Eq. (4) the T1 and T2 clusters significantly relax

compared to their initial T
(MC)
1 (τ) and T

(MC)
2 (τ) values extracted from |Ψ(MC)(τ)〉, so that

the final CAD-FCIQMC correlation energy ∆E, calculated using Eq. (1), is considerably

different than its instantaneous FCIQMC counterpart determined at time τ ,

∆E(MC) = 〈Φ|HN

[
C

(MC)
1 (τ) + C

(MC)
2 (τ)

]
|Φ〉

= 〈Φ|
[
HN exp(T

(MC)
1 (τ) + T

(MC)
2 (τ))

]
C
|Φ〉,

(5)

we can conclude that the FCIQMC wave function |Ψ(MC)(τ)〉 is not well converged yet. On

the other hand, if T
(MC)
3 (τ) and T

(MC)
4 (τ) obtained by the cluster analysis of |Ψ(MC)(τ)〉

are nearly exact, T1, T2, and ∆E will relax very little during the CC iterations based on

Eq. (4) compared to their T
(MC)
1 (τ), T

(MC)
2 (τ), and ∆E(MC) values. This means that if the

final CAD-FCIQMC correlation energy ∆E, Eq. (1), obtained after solving the CC system

defined by Eq. (4), and its initial FCIQMC counterpart ∆E(MC), Eq. (5), agree to within a

certain numerical precision, we may be able to claim that the CAD-FCIQMC estimate of the

correlation energy is stable to within the same precision. This follows the observation, which
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is a formal basis of all externally corrected CC approaches, that if T
(MC)
3 (τ) and T

(MC)
4 (τ)

were exact, T1 and T2 obtained by solving Eq. (4) would become exact too, i.e., the relaxation

of T1, T2, and ∆E compared to their T
(MC)
1 (τ), T

(MC)
2 (τ), and ∆E(MC) values would be zero.

The deterministic a posteriori CAD-FCIQMC steps, as summarized above, may provide

useful insights into the error bounds associated with the FCIQMC wave functions, but this is

not to say that these steps alone provide complete information about errors. In analyzing the

results of CAD-FCIQMC calculations, we have to keep in mind that the underlying FCIQMC

wave function propagations have their own intrinsic errors, which the deterministic CAD-

FCIQMC steps cannot eliminate, such as the errors resulting from the use of the initiator

algorithm and finite walker population. This means that CAD-FCIQMC can provide us

with accurate estimates of the τ =∞ limit of a given FCIQMC propagation, without having

to go through time-consuming equilibration and blocking analysis, but it cannot eliminate

errors resulting from the use of finite walker populations in determining the FCIQMC wave

functions. Furthermore, there exist special cases of external wave functions serving as sources

of T3 and T4 clusters in the CC amplitude equations for T1 and T2 of the type of Eq. (4),

namely, all CC states defined by T =
∑M

n=1 Tn with M ≥ 4, starting from CCSDTQ,S41,S42

where errors determined through the above amplitude and correlation energy relaxation

argument are by definition zero, even though the CC states with M < N are not exact. On

the other hand, it is unlikely that any of the FCIQMC wave functions |Ψ(MC)(τ)〉, which are

obtained in stochastic processes allowing walkers to explore the entire N -electron Hilbert

space without setting up a priori constraints regarding the cluster structure of |Ψ(MC)(τ)〉,

is a CC state with T =
∑M

n=1 Tn and 4 ≤ M < N . Thus, the degree of relaxation of the

singly and doubly excited clusters and correlation energy, resulting from solving Eq. (4)

for T1 and T2 in the presence of T
(MC)
3 (τ) and T

(MC)
4 (τ) extracted from the FCIQMC state

|Ψ(MC)(τ)〉, compared to their T
(MC)
1 (τ), T

(MC)
2 (τ), and ∆E(MC) values, combined with the

changes in the final CAD-FCIQMC correlation energy ∆E as a consequence of increasing

the propagation time τ , as in Ref. S23, or, as has been done in this work, where τs were
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sufficiently long, as a consequence of increasing the target walker population in the AS-

FCIQMC algorithm discussed in Section 5, provides us with trustworthy estimates of the

accuracy of CAD-FCIQMC computations. We will rely on these estimates when discussing

the CAD-FCIQMC results for benzene summarized in Table S5 in a later part of this section.

Following the above description, the CAD-FCIQMC algorithm consists of the following

three steps:S23 (i) a stochastic FCIQMC run to produce the wave function |Ψ(MC)(τ)〉 for

the subsequent cluster analysis (it is sufficient to store the CI excitation amplitudes through

C
(MC)
4 (τ)), (ii) a cluster analysis of |Ψ(MC)(τ)〉 to extract the T

(MC)
n (τ) components with

n = 1–4 from the corresponding C
(MC)
n (τ) amplitudes, and (iii) a deterministic CCSD-like

calculation using Eq. (4) in which one solves for the T1 and T2 clusters in the presence of

the T
(MC)
3 (τ) and T

(MC)
4 (τ) components extracted from |Ψ(MC)(τ)〉. In the case of the CAD-

FCIQMC calculations for the benzene/cc-pVDZ system reported in this work, summarized

in Table S5 (see, also, Table S2 and Fig. 1 in the main text), the underlying FCIQMC com-

putations defining step (i), which were performed using the NECI code,S21 exploited the AS-

FCIQMC algorithm developed in Ref. S20. The details of these calculations can be found in

Section 5. Here, we only mention that the following instantaneous FCIQMC wave functions

|Ψ(MC)(τ)〉 were subjected to CAD-FCIQMC processing: the AS-FCIQMC state obtained at

the end of the equilibration period defined by 1 billion (1B) walkers, which we abbreviate as

|Ψ(AS-FCIQMC)
1B 〉, and the AS-FCIQMC state, abbreviated as |Ψ(AS-FCIQMC)

2B 〉, obtained at the

end of the equilibration period defined by 2 billion (2B) walkers. To test the numerical stabil-

ity of our highest-level CAD-FCIQMC results using 2B walkers, we also attempted to replace

the instantaneous |Ψ(AS-FCIQMC)
2B 〉 wave function by the AS-FCIQMC(2B) state obtained by

averaging the last 100 time steps, which we abbreviate as |Ψ(AS-FCIQMC)
2B (100-avg)〉.

Once the |Ψ(AS-FCIQMC)
1B 〉, |Ψ(AS-FCIQMC)

2B 〉, and |Ψ(AS-FCIQMC)
2B (100-avg)〉 states were gener-

ated and the required CI excitation amplitudes through C
(MC)
4 (τ) were stored, the remaining

deterministic steps of the CAD-FCIQMC procedure, including the cluster analysis of each

of the above AS-FCIQMC wave functions (step (ii)) and the final CCSD-like calculations of
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T1 and T2 based on Eq. (4) (step (iii)), were performed with the in-house codes developed by

the Piecuch group in this project, which were interfaced with NECI and which used the same

sets of one- and two-electron molecular integrals (corresponding to the RHF basis) as those

employed in the underlying AS-FCIQMC calculations. These codes are characterized by sev-

eral improvements compared to our initial implementation of the CAD-FCIQMC approach

reported in Ref. S23, which required storing the T
(MC)
3 (τ) and T

(MC)
4 (τ) vectors prior to con-

structing the CC amplitude equations defined by Eq. (4). The CAD-FCIQMC codes used

in this work eliminate the need for storing large sets of T
(MC)
4 (τ) cluster amplitudes, such

as those that correspond to the |Ψ(AS-FCIQMC)
1B 〉, |Ψ(AS-FCIQMC)

2B 〉, and |Ψ(AS-FCIQMC)
2B (100-avg)〉

wave functions for benzene. They store the T
(MC)
1 (τ), T

(MC)
2 (τ), and T

(MC)
3 (τ) vectors ex-

tracted from the underlying AS-FCIQMC wave functions prior to constructing the CC am-

plitude equations for T1 and T2 defined by Eq. (4), while processing the T
(MC)
4 (τ) amplitudes

produced during the cluster analysis steps on the fly, saving only the T
(MC)
4 (τ)-containing

〈Φab
ij |[HNT

(MC)
4 (τ)]C |Φ〉 contributions to Eq. (4), whose number equals the number of the dou-

bly excited determinants |Φab
ij 〉. In principle, we could also avoid storing the T

(MC)
3 (τ) vectors,

which would be particularly easy to do in the case of the linear 〈Φa
i |[HNT

(MC)
3 (τ)]C |Φ〉 and

〈Φab
ij |[HNT

(MC)
3 (τ)]C |Φ〉 contributions, but we have not done it yet, since the third T

(MC)
3 (τ)-

containing term in the CC system defined by Eq. (4), namely, 〈Φab
ij |[HNT1T

(MC)
3 (τ)]C |Φ〉, in

which T
(MC)
3 (τ) is fixed at its FCIQMC value and T1 is iterated, would require additional

changes in the CC routines used to set up Eq. (4) in this work, which are beyond the scope

of the present study. It is worth pointing out though that unlike T
(MC)
4 (τ), which becomes

quickly unmanageable as the system size increases, the T
(MC)
3 (τ) amplitude vector is not

difficult to store for the molecules of the size of benzene. Formally, T
(MC)
3 (τ) is a three-body

component of T , suggesting large computational costs, but by the virtue of a stochastic wave

function sampling during FCIQMC propagations the numbers of nonzero amplitudes in the

T
(MC)
3 (τ) vectors are much smaller than the numbers of all triples in the corresponding T3

operators. Thus, storing T
(MC)
3 (τ) prior to constructing the T

(MC)
3 (τ)-containing terms in Eq.
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(4) is not a major bottleneck, when medium-size systems, such as benzene, are examined.

Storing T
(MC)
4 (τ) is, so pre-computing the 〈Φab

ij |[HNT
(MC)
4 (τ)]C |Φ〉 contributions to Eq. (4)

during the cluster analysis is a lot more important.

As a result of the above improvements in our CAD-FCIQMC codes, both the cluster

analyses of the AS-FCIQMC wave functions (to be precise, of the CI excitation amplitudes

through quadruples defining these wave functions) and the final CC iterations based on Eq.

(4) represented a relatively inexpensive computational effort when the benzene/cc-pVDZ sys-

tem was examined. Indeed, the cluster analysis of the one-billion-walker state |Ψ(AS-FCIQMC)
1B 〉

required 5.6 hours using a single core of a shared-memory (SMP) node from Dell consisting

of two 10-core Intel Xeon Silver 4114 2.20 GHz processors with 25.6 GB memory per core.

In the case of the two-billion-walker states |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉, we

needed 8.1 hours per state on the same machine to complete the cluster analysis step, again

using only one core. The final CC iterations, in which we solved for the T1 and T2 clus-

ters in the presence of the T
(MC)
3 (τ) and T

(MC)
4 (τ) components extracted from the above

AS-FCIQMC wave functions, required about 200 seconds on all 20 cores of the aforemen-

tioned Dell node to reach convergence. We typically needed 10 iterations to converge the

CAD-FCIQMC energies to within 10−6EH when using the T
(MC)
1 (τ) and T

(MC)
2 (τ) ampli-

tudes extracted from the AS-FCIQMC wave functions as initial guesses for T1 and T2 in the

CCSD-like calculations based on Eq. (4).

The disk storage and memory requirements characterizing the CAD-FCIQMC calcula-

tions for the benzene/cc-pVDZ system considered in this study were relatively modest too.

We illustrate them by the most demanding CAD-FCIQMC runs based on processing the

two-billion-walker AS-FCIQMC states, such as |Ψ(AS-FCIQMC)
2B 〉. The NECI output file con-

taining the |Ψ(AS-FCIQMC)
2B 〉 wave function up to C

(MC)
4 (τ) contributions was about 49 GB

in size. About 35 GB of this were the data used in the cluster analysis (the list of deter-

minants through quadruples contributing to |Ψ(AS-FCIQMC)
2B 〉 along with the corresponding

walker numbers), and the rest was the information relevant to the AS-FCIQMC run that
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produced |Ψ(AS-FCIQMC)
2B 〉 which we did not need and could discard. As already explained,

the T
(MC)
4 (τ) amplitudes extracted from the AS-FCIQMC wave functions used in the CAD-

FCIQMC calculations reported in this work, needed to construct the 〈Φab
ij |[HNT

(MC)
4 (τ)]C |Φ〉

contributions to Eq. (4), were processed on the fly, so we did not have to store them, but the

T
(MC)
1 (τ), T

(MC)
2 (τ), and T

(MC)
3 (τ) vectors produced during the cluster analysis were saved.

For each of the AS-FCIQMC states considered in this study, we saved them as a single disk

file. To facilitate and speed up the cluster analysis and the subsequent CC calculations

based on Eq. (4), we kept all of the T
(MC)
2 (τ) and T

(MC)
3 (τ) amplitudes, including those

obtained by permuting orbital indices, i.e., not just the non-redundant ones, in that file.

As a result, for the most demanding, two-billion-walker AS-FCIQMC states considered in

this work, such as |Ψ(AS-FCIQMC)
2B 〉, the file containing the T

(MC)
1 (τ), T

(MC)
2 (τ), and T

(MC)
3 (τ)

amplitudes was about 81 GB in size. Given the fact that the aforementioned SMP Dell

node used in the deterministic steps of our CAD-FCIQMC calculations had a sufficiently

large memory (512 GB total), during each of the cluster analyses performed in this work we

kept the file containing the AS-FCIQMC wave function information through quadruples and

the file containing the T
(MC)
1 (τ), T

(MC)
2 (τ), and T

(MC)
3 (τ) amplitudes, as described above, in

memory. This meant using 116 GB of resident memory during the cluster analysis of the

most demanding, two-billion-walker AS-FCIQMC states considered in this work (35 GB for

the wave function information through quadruples and 81 GB for the T
(MC)
1 (τ), T

(MC)
2 (τ),

and T
(MC)
3 (τ) amplitudes). We kept the T

(MC)
1 (τ), T

(MC)
2 (τ), and T

(MC)
3 (τ) amplitudes (81

GB), along with the T1 and T2 vectors and the relevant intermediates needed to construct

the CC equations based on Eq. (4) (< 1 GB), in memory as well.

The CAD-FCIQMC results for the benzene/cc-pVDZ system considered in this study

are summarized in Table S5. Following the above description, and to facilitate our error

analysis, along with the final CAD-FCIQMC correlation energies ∆E, determined using

Eq. (1) after solving for the T1 and T2 clusters in the presence of T
(MC)
3 (τ) and T

(MC)
4 (τ)

extracted from the AS-FCIQMC wave functions, abbreviated as CAD-FCIQMC[1–5] and
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Table S5: Results of the CAD-FCIQMC calculations based on the AS-FCIQMC wave
functions obtained after equilibration runs using 1 billion (1B) and 2 billion (2B) walkers.

Calculation ∆E/mEH

AS-FCIQMC(1B) −864.8± 0.5
CAD-FCIQMC-ext(1B) −867.010
CAD-FCIQMC[1–5](1B) −864.089
CAD-FCIQMC[1,(3+4)/2](1B) −863.861
AS-FCIQMC(2B) −863.7± 0.3
CAD-FCIQMC-ext(2B) −863.464
CAD-FCIQMC[1–5](2B) −863.453
CAD-FCIQMC[1,(3+4)/2](2B) −863.438
CAD-FCIQMC-ext(2B,100-avg) −863.460
CAD-FCIQMC[1–5](2B,100-avg) −863.439

CAD-FCIQMC[1,(3+4)/2], we show the initial projected correlation energies ∆E(MC), Eq.

(5), calculated using the T
(MC)
1 (τ) and T

(MC)
2 (τ) amplitudes prior to the CC iterations based

on Eq. (4), abbreviated as CAD-FCIQMC-ext. We also show the results of the underlying

AS-FCIQMC propagations, along with the corresponding error bars, obtained after equi-

librating walker populations and performing the blocking analyses discussed in Section 5.

For clarity of our presentation, each of the acronyms seen in Table S5 is augmented with

the information about the target walker population used in the stochastic AS-FCIQMC run

preceding the deterministic CAD-FCIQMC steps. Thus, the CAD-FCIQMC-ext(1B), CAD-

FCIQMC[1–5](1B), and CAD-FCIQMC[1,(3+4)/2](1B) correlation energies correspond to

the instantaneous AS-FCIQMC(1B) state obtained at the end of the equilibration period

using 1 billion walkers, which we previously abbreviated as |Ψ(AS-FCIQMC)
1B 〉, whereas the

CAD-FCIQMC-ext(2B), CAD-FCIQMC[1–5](2B), and CAD-FCIQMC[1,(3+4)/2](2B) re-

sults correspond to |Ψ(AS-FCIQMC)
2B 〉. The last two correlation energies in Table S5, designated

as CAD-FCIQMC-ext(2B,100-avg) and CAD-FCIQMC[1–5](2B,100-avg), correspond to the

two-billion-walker AS-FCIQMC(2B) state obtained by averaging the last 100 time steps, ab-

breviated as |Ψ(AS-FCIQMC)
2B (100-avg)〉. The information in the square brackets at the CAD-

FCIQMC acronyms in Table S5 indicates the (T2)
2 Goldstone-Hugenholtz diagrams entering
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the CCSD-like system used in the final stage of the CAD-FCIQMC calculations (adopting

the diagram numbering taken from Fig. 4 in Ref. S32) that were treated deterministically by

solving the respective CC amplitude equations. Thus, CAD-FCIQMC[1–5] means that all

five (T2)
2 Goldstone-Hugenholtz diagrams of the CCSD-like system defined by Eq. (4) were

treated deterministically, whereas CAD-FCIQMC[1,(3+4)/2] implies that only diagram 1

and an average of diagrams 3 and 4, which are responsible for capturing strong correlations

(originally considered in one of the approximate coupled-pair theories discovered and tested

in Ref. S43, which was re-discovered as a distinguishable cluster approximation in Ref. S44),

were evaluated using the T2 amplitudes obtained by solving the CC equations, with the

rest of (T2)
2 calculated using T

(MC)
2 (τ) extracted from FCIQMC. Much of the discussion in

this section focuses on the CAD-FCIQMC[1–5] approach, as introduced in Ref. S23. The

CAD-FCIQMC[1,(3+4)/2] algorithm will be discussed in detail in a separate publication.S45

As shown in Table S5, there is a great deal of consistency among the CAD-FCIQMC

results, especially when the two-billion walker |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉

states are used as sources of the triply and quadruply excited clusters. In this case, the

relaxation of the T1 and T2 clusters and correlation energy ∆E, resulting from iterating

T1 and T2 in the presence of T
(MC)
3 (τ) and T

(MC)
4 (τ) extracted from |Ψ(AS-FCIQMC)

2B 〉 and

|Ψ(AS-FCIQMC)
2B (100-avg)〉, compared to the initial T

(MC)
1 (τ), T

(MC)
2 (τ), and ∆E(MC) values

is virtually none, on the order of 0.01–0.03 mEH when the correlation energies are ex-

amined (cf. the CAD-FCIQMC[1–5](2B) and CAD-FCIQMC[1,(3+4)/2](2B) ∆E values

in Table S5 with their CAD-FCIQMC-ext(2B) counterpart or CAD-FCIQMC[1–5](2B,100-

avg) with CAD-FCIQMC-ext(2B,100-avg)). This suggests that the |Ψ(AS-FCIQMC)
2B 〉 and

|Ψ(AS-FCIQMC)
2B (100-avg)〉 wave functions obtained in the AS-FCIQMC(2B) propagations using

2 billion walkers, at least their C
(MC)
n (τ) components through n = 4, are numerically stable

and very well converged. Given the fact that the AS-FCIQMC propagations are allowed

to explore the entire many-electron Hilbert space and populate determinants higher than

quadruples, we can anticipate that the C
(MC)
n (τ) wave function components with n > 4, which
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are intrinsically coupled to their n ≤ 4 counterparts during the AS-FCIQMC calculations,

are accurately represented by |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉 as well. While, as

pointed out above, the relaxation of T1, T2, and ∆E in the CC iterations based on Eq. (4)

could also become small if |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉 mimicked one of the

truncated CC states with T =
∑M

n=1 Tn and 4 ≤M < N , we do not think that this is likely

in the purely stochastic AS-FCIQMC runs that do not constrain the wave function’s cluster

structure. For example, neither |Ψ(AS-FCIQMC)
2B 〉 nor |Ψ(AS-FCIQMC)

2B (100-avg)〉 represent the

CCSDTQ (M = 4) wave function or an approximation to it, since all of the CAD-FCIQMC

correlation energies resulting from the use of |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉

differ from the CCSDTQ correlation energy by 1 mEH or more. The remarkable numer-

ical stability of the CAD-FCIQMC calculations using the two-billion-walker AS-FCIQMC

states can be appreciated even more if we compare the CAD-FCIQMC[1–5](2B), CAD-

FCIQMC[1,(3+4)/2](2B), and CAD-FCIQMC[1–5](2B,100-avg) correlation energies with

one another. The CAD-FCIQMC[1–5](2B) and CAD-FCIQMC[1,(3+4)/2](2B) ∆E val-

ues agree to within 0.015 mEH, although some (T2)
2 diagrams participating in the CC

iterations defining the latter calculation were determined using the fixed T
(MC)
2 (τ) ampli-

tudes extracted from the |Ψ(AS-FCIQMC)
2B 〉 state. The CAD-FCIQMC[1–5](2B) and CAD-

FCIQMC[1–5](2B,100-avg) correlation energies agree to within 0.014 mEH, although the

former calculation uses the instantaneous |Ψ(AS-FCIQMC)
2B 〉 wave function obtained at the end

of the equilibration period to determine T
(MC)
3 (τ) and T

(MC)
4 (τ), whereas the latter one relies

on the |Ψ(AS-FCIQMC)
2B (100-avg)〉 state obtained by averaging the last 100 time steps during

walker equilibration stage.

Our highest-level CAD-FCIQMC calculations using the two-billion-walker AS-FCIQMC

states to provide the information about the triply and quadruply excited clusters suggest

that the FCI correlation energy for the benzene/cc-pVDZ system examined in this work

can be estimated at −863.44(1) mEH (rounded up in Table S2 to −863.4 mEH). This result

seems to be well converged in its own right, but it is additionally reassuring that all of
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our CAD-FCIQMC(2B) calculations, including those in which the T1 and T2 clusters were

allowed to relax during the final CC iterations, fall within the error bars of the underly-

ing AS-FCIQMC(2B) propagation, estimated at ±0.3 mEH, which were obtained completely

independently after equilibrating walker populations and performing the blocking analysis

involving the last 2,637 time steps, discussed in Section 5. In fact, there is a great deal of

consistency between our CAD-FCIQMC[1–5](1B) and CAD-FCIQMC[1,(3+4)/2](1B) cal-

culations, in which the T1 and T2 clusters were iterated in the presence of T
(MC)
3 (τ) and

T
(MC)
4 (τ) extracted from the one-billion-walker |Ψ(AS-FCIQMC)

1B 〉 state, and the purely stochas-

tic AS-FCIQMC(1B) run. The correlation energy resulting from the CAD-FCIQMC calcu-

lations using |Ψ(AS-FCIQMC)
1B 〉, obtained by averaging the CAD-FCIQMC[1–5](1B) and CAD-

FCIQMC[1,(3+4)/2](1B) ∆E values, of −864.0(1) mEH, is slightly outside the ±0.5 mEH

error bars of the underlying AS-FCIQMC(1B) propagation, but only slightly. In fact, the

one-billion-walker AS-FCIQMC calculation is not as well converged as the AS-FCIQMC(2B)

run, as can be seen by comparing the projected CAD-FCIQMC-ext(1B) correlation en-

ergy, calculated using the T
(MC)
1 (τ) and T

(MC)
2 (τ) amplitudes extracted from |Ψ(AS-FCIQMC)

1B 〉,

with the converged CAD-FCIQMC[1–5](1B) and CAD-FCIQMC[1,(3+4)/2](1B) ∆E val-

ues obtained after iterating T1 and T2. For example, the difference between the CAD-

FCIQMC-ext(1B) correlation energy and its relaxed CAD-FCIQMC[1–5](1B) and CAD-

FCIQMC[1,(3+4)/2](1B) counterparts is about 3 mEH, as opposed to 0.02–0.03 mEH when

we compare the analogous two-billion-walker data. Despite all this, our converged CAD-

FCIQMC calculations utilizing T
(MC)
3 (τ) and T

(MC)
4 (τ) extracted from the |Ψ(AS-FCIQMC)

1B 〉

state produce the correlation energy which is in good agreement with both the extrapolated

AS-FCIQMC(1B) and AS-FCIQMC(2B) values and with our highest-level CAD-FCIQMC

results obtained using the two-billion-walker AS-FCIQMC states. This illustrates the abil-

ity of the deterministic CC iterations used by the CAD-FCIQMC approach, in which we

relax the T1 and T2 amplitudes in the presence of the triply and quadruply excited clusters

extracted from FCIQMC, to accurately extrapolate the results of the long-time FCIQMC
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dynamics.

The fact that the substantial increase in the walker population in the underlying AS-

FCIQMC calculations, from one to two billion, changes the final CAD-FCIQMC correlation

energy very little is reassuring too, demonstrating that the semi-stochastic CAD-FCIQMC

calculations are capable of reducing the walker population error of the underlying AS-

FCIQMC propagations in a substantial manner. Indeed, the final CAD-FCIQMC correlation

energies obtained by iterating T1 and T2 in the presence of T
(MC)
3 (τ) and T

(MC)
4 (τ) extracted

from FCIQMC change only by about 0.5 mEH when the one-billion-walker |Ψ(AS-FCIQMC)
1B 〉

state is replaced by its two-billion-walker |Ψ(AS-FCIQMC)
2B 〉 and |Ψ(AS-FCIQMC)

2B (100-avg)〉 coun-

terparts. This should be compared to the 1.1 mEH difference between the corresponding

AS-FCIQMC(1B) and AS-FCIQMC(2B) correlation energies, although one should keep in

mind that these energies carry stochastic errors estimated at ±0.5 mEH and ±0.3 mEH, re-

spectively. It is certainly encouraging that with a rather modest computational effort, the

CAD-FCIQMC approach is capable of producing numerically stable and reasonably con-

verged results. Given the above analysis and being conservative about the various errors

that contribute to the CAD-FCIQMC calculations, we can conclude that our best FCI cor-

relation energy estimate of about −863.4 mEH, which we use in the present study as our

final CAD-FCIQMC value, is accurate to within 0.5 mEH (with the likelihood that the error

bars associated with this result are even smaller).

7 SHCI

For details of the current version of SHCI theory, please see Refs. S46 and S47 as well as

references therein. SHCI, in common with other selected configuration interaction plus per-

turbation theory (SCI+PT) methods, has two stages. In the first stage, a variational wave

function is constructed iteratively, starting from a determinant that is expected to have a

significant amplitude in the final wave function. The number of determinants in the vari-
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ational wave function is controlled by a parameter ε1. In the second stage, second-order

Epstein-Nesbet perturbation theory is used to improve upon the variational energy. The

number of determinants used to compute the perturbative correction is controlled by a sec-

ond parameter ε2, which is chosen in this study to be ε2 = 10−3× ε1. The total energy (sum

of the variational energy and the perturbative correction) is computed at several values of

ε1 and extrapolated to ε1 → 0 to obtain an estimate for the FCI energy.

The convergence of the SHCI variational and total energies with respect to the number of

determinants depends on the choice of orbitals. The simplest choice, Hartree-Fock orbitals,

typically give slow convergence. Natural orbitals, obtained from SHCI, give faster conver-

gence, and orbitals optimized within SHCI to minimize the variational energy at some fairly

large value of ε1 give yet faster convergence. For molecules with more than a few atoms,

split-localized optimized orbitals give faster convergence than delocalized optimized orbitals.

In this study we used Pipek-Mezey split-localized optimized orbitals constructed using the

methods described in Ref. S47. The value of ε1 used in the optimization was 2.0× 10−3 mEH

for the blind test, and 1.0× 10−4 mEH for the subsequent improved calculations.

The final energy is obtained by a weighted fit of the total energies to a quadratic func-

tion of the perturbative correction, as shown in Fig. S4 for the calculation submitted for the

blind test, and in Fig. S5 for the subsequent calculation that used better optimized orbitals

and smaller values of ε1. The weight function used is the inverse square of the perturbative

correction. Table S6 shows the same information in greater detail, including also the values

of ε1 used and the number of time-reversal symmetrized determinants and the number of

determinants. Our largest calculation included 5.4× 108 determinants.

The total energy provided for the blind test, −231.5861 EH was the value from the 7-

point weighted quadratic fit shown in Table S6 along with a conservative estimate for the
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Figure S3: SHCI energies versus number of determinants. Blind test energies are plotted
with solid lines, updated energies obtained with further optimized orbitals (not part of main
study) are plotted with dashed lines.

extrapolation error of 1.5 mEH, which is almost an order of magnitude larger than the fit

error. This corresponds to a correlation energy of −864.2 mEH. In contrast to the statistical

error, which has a well-defined probabilistic meaning, there is no well defined method for

estimating the extrapolation error and different groups report wildly different estimates even

when the underlying calculations are similar. In light of our subsequent calculations using

better optimized orbitals and going down to smaller values of ε1, we could have gotten a

slightly more accurate energy estimate of −231.5856 EH using the 5-point fit. Although

the extrapolation curve is nearly linear, when sufficiently many data points are available,

it is appropriate to perform a fit with a higher-order polynomial. The reduced chi-squared

statistic can be used to avoid overfitting. A weighted cubic fit of either data set, using

all the data points for that set, gives a total energy of −231.5851 EH, corresponding to a

correlation energy of −863.3 mEH. This should be considered to be the best post blind test

SHCI estimate. Note that all the extrapolation estimates in this paragraph are well within

the estimated error provided with the blind test.
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Table S6: SHCI variational and total energy convergence. The top block of the table is
for the partially optimized orbitals used in the blind test, whereas the bottom block is for
further optimized orbitals and smaller values of ε1. The errors in the total energies, Etot,
for finite values of ε1 are statistical errors. These are negligible, particularly for the smaller
ε1 values. The errors in Etot extrapolated to ε1 = 0 are fit errors which typically greatly
underestimate the actual extrapolation error. The energy reported in the blind test was that
from the 7-point fit, with a conservative estimate of the extrapolation error which is almost
an order of magnitude larger than the fit error.

ε1 N sym
det Ndet Evar Etot

2.0× 10−4 579 708 1 134 081 −231.468 564 −231.550 787 ± 0.000 010
1.0× 10−4 1 975 676 3 901 848 −231.491 252 −231.557 309 ± 0.000 010
5.0× 10−5 6 790 526 13 486 304 −231.511 826 −231.563 444 ± 0.000 007
2.0× 10−5 32 178 640 64 100 382 −231.533 720 −231.570 044 ± 0.000 005
1.5× 10−5 51 218 692 102 088 555 −231.539 142 −231.571 697 ± 0.000 005
1.0× 10−5 97 754 454 194 977 798 −231.545 790 −231.573 686 ± 0.000 003
8.0× 10−6 138 641 259 276 617 654 −231.548 984 −231.574 641 ± 0.000 003

Extrap. using 7 pts. −231.586 064 −231.586 064 ± 0.000 160
Extrap. using 6 pts. −231.585 772 −231.585 772 ± 0.000 120
Extrap. using 5 pts. −231.585 569 −231.585 569 ± 0.000 143

1.0× 10−4 1 914 692 3 780 337 −231.497 568 −231.558 399 ± 0.000 010
5.0× 10−5 6 410 037 12 722 141 −231.516 872 −231.564 290 ± 0.000 006
2.0× 10−5 29 787 396 59 310 339 −231.537 074 −231.570 545 ± 0.000 006
1.5× 10−5 47 463 030 94 569 745 −231.542 155 −231.572 140 ± 0.000 006
1.0× 10−5 90 601 302 180 662 587 −231.548 415 −231.574 081 ± 0.000 002
5.0× 10−6 268 931 930 536 792 289 −231.557 059 −231.576 736 ± 0.000 002

Extrap. using 6 pts. −231.585 609 −231.585 609 ± 0.000 104
Extrap. using 5 pts. −231.585 464 −231.585 464 ± 0.000 105

All calculations were performed using the Arrow code.S48 For the blind test runs, the

calculations shown in Table S6 for ε1 = 2.0× 10−4, 1.0× 10−4, 5.0× 10−5 and 2.0× 10−5

took in total 13 hours on four Intel(R) Xeon(R) Silver-4110 nodes (16 cores @ 2.1 GHz, 24

GB/core), and the calculations for ε1 = 1.0× 10−5 and 8.0× 10−6 took in total 49 hours on

one Intel Xeon E7-8870v4 node (40 cores @ 2.1 GHz, 75 GB/core).

S-23



-231.590

-231.585

-231.580

-231.575

-231.570

-231.565

-231.560

-231.555

-231.550

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

E
to

t 
(E

h
)

Evar-Etot (Eh)

Energy of C6H6, cc-pVDZ basis, partially optim. localized orbs

quadratic fit to 5 pts
quadratic fit to 6 pts
quadratic fit to 7 pts

Figure S4: Convergence plot of SHCI total energies for the partially optimized orbitals
used in the blind test. The lines are weighted quadratic fits, using varying number of points
with the smallest Evar − Etot values.
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Figure S5: Convergence plot of SHCI total energies for further optimized orbitals and
smaller ε1 values. The lines are weighted quadratic fits, using varying number of points with
the smallest Evar − Etot values.
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Figure S6: ASCI results. Original results are plotted with solid lines, updated localized
orbital results (not part of main study) are plotted with dashed lines.

Details on the most recent version of ASCI theory has recently been presented else-

where.S49,S50 All ASCI calculations were performed using a development version of Q-Chem

5.2S51 on AMD EPYC 7401 hardware (2.0 GHz, 5.3 GB/core). The CI component was run

in parallel over 24 processors but the subsequent Epstein-Nesbet PT2 correction was com-

puted on a single processor. The active space orbitals were optimized from canonical HF

MOs in an multiconfigurational self-consistent field (MCSCF) manner (while only consider-

ing active-active rotations, i.e. keeping the core levels frozen), using 5 × 105 ASCI selected

determinants,S52 prior to PT2 calculations with varying number of determinants. The com-

puted ASCI results are presented in Figure S6, and the final extrapolated correlation energy

is estimated to be ∆EASCI = −860.0 ± 0.2 mEH with the error bar spanned by the uncer-

tainty in the extrapolation towards the limit of zero PT2 correction (standard deviation of

a linear fit with last 3 points, as described in Ref S53).
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8.1 ASCI with localized orbitals

Subsequent to the blind challenge, an additional effort was made to determine the impact

of using spatial symmetry broken localized orbitals as an initial guess instead of delocalized

canonical MOs. The occupied canonical orbitals were consequently Pipek-Mezey localizedS7

and the virtual space subjected to the Sano procedureS54 to obtain the corresponding an-

tibonding orbitals. These resulting orbitals were similarly optimized by active-active rota-

tions in an MCSCF manner, using 5 × 105 ASCI determinants.S52 The optimized localized

orbitals yielded significantly lower variational energies for a given size of ASCI wave func-

tion, although inclusion of PT2 resulted in values quite similar with those obtained from

delocalized orbitals (as can be seen from Table S7 and Figure S6). The lower magnitude of

PT2 corrections nonetheless suggest that the localized orbital ASCI values are more reliable,

especially with respect to extrapolation (by virtue of being closer to the EPT2 → 0 limit).

Extrapolation of the results obtained using localized orbitals to EPT2 → 0 limit yields a

correlation energy of −861.3± 0.5 mEH.

It is however worth noting that this localized orbital result is essentially outside the

range estimated from the original delocalized case (-860.0 ± 0.2 mEH). This, in conjunction

with the relatively low magnitude of correlation energy predicted by ASCI relative to other

methods, indicates that the extrapolated ASCI error bar estimate is much too small in this

case. This is likely a consequence of the stubbornly large EPT2 values for the variational

subspace sizes considered (as can be seen from Table S7), which likely prevents attainment of

the asymptotic EPT2 → 0 regime behavior for the extrapolation (despite r2 of the linear fit

being very close to 1, which is the origin of the too small error bars). It is however also worth

noting that the extrapolation protocol nonetheless is quite effective, recovering ∼ −25/− 26

mEH of the ∼ −28 mEH correlation not recovered by ASCI+PT2 alone (assuming an actual

correlation energy of ∼ −863 mEH). More reliable estimates from ASCI+PT2 would require

larger variational subspaces than those studied in this work. Our original choice was partly
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determined by code limitations, though we considered 5× 106 determinants to be sufficient

at the time of the blind challenge.

Table S7: Correlation energies (Ec, in mEH) for ASCI wave functions with various number
of determinants (Ndets).

Delocalized Orbitals (original blind test) Localized orbitals
Ndets Evar

c EPT2
c Evar+PT2

c Ndets Evar
c EPT2

c Evar+PT2
c

1× 105 −661.17 −159.97 −821.14 1× 105 −698.31 −116.74 −815.05
2.5× 105 −685.91 −139.54 −825.45 2.5× 105 −719.63 −101.03 −820.65
5× 105 −698.34 −129.41 −827.75 5× 105 −735.12 −89.49 −824.62
1× 106 −709.96 −120.04 −830.00 1× 106 −749.43 −79.17 −828.60
2× 106 −721.68 −110.61 −832.29 2× 106 −761.51 −70.49 −832.00
5× 106 −737.13 −98.25 −835.38 4× 106 −772.35 −62.83 −835.18
Fit −860.0± 0.2 Fit −861.3± 0.5

9 iCI

The iCI approach,S55,S56 which was born from the restricted static-dynamic-staticS57 (SDS)

framework for treating strongly correlated electrons, is a method designed to converge from

above to the FCI limit within just a few iterations, by constructing and diagonalizing a

3NP × 3NP Hamiltonian matrix at each macro/micro-iteration, even when starting with a

very poor initial guess. Here, NP denotes the number of target states. This convergence

behaviour is hardly surprising, since the lowest order realization of the SDS framework, i.e.,

SDSPT2,S58 already performs very well for prototypical systems of variable near degenera-

cies. However, iCI is computationally very expensive. One way out is to combine iCI with

the idea of configuration selection, so as to generate a compact variational space for static

correlation. The remaining dynamic correlation is treated via Epstein-Nesbet PT2. In brief,

iCI has the following features: (i) Full spin symmetry is always maintained by taking con-

figuration state functions (CSF) as the many-electron basis. (ii) Although the selection is

performed on individual CSFs, it is orbital configurations (oCFG) that are used as the or-

ganizing units. (iii) Given a coefficient pruning threshold, Cmin (which determines the size
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of the variational space for static correlation), the selection of important oCFGs/CSFs is

performed iteratively until convergence. (iv) At each iteration in the growth of the wave

function, the first-order interacting space is decomposed into disjoint subspaces, so as to

reduce memory requirement on one hand and facilitate parallelization on the other. (v)

Upper bounds (which involve only two-electron integrals) for the interactions between dou-

bly connected oCFG pairs are used to screen each first-order interacting subspace before

the first-order coefficients of individual CSFs are evaluated. (vi) The diagonalization of the

Hamiltonian matrix in the variational space is achieved by the iterative vector interaction

(iVI) methodS59,S60 (which, for Np roots, constructs and diagonalizes a 3Np× 3Np matrix in

each iteration). (vii) Upon termination of the selection, dynamic correlation is estimated by

using state-specific Epstein-Nesbet PT2 (iCIPT2). Results were obtained in D2h point group

symmetry using either HF or natural (NO) orbitals, cf. Fig. S7, of which the linearly extrap-

olated (using the last six data points) iCIPT2(NO) result of ∆EiCIPT2(NO) = −861.05± 0.5

mEH is used in Fig. 1 of the main text, cf. Table S8 and Fig. S8. Calculations were run

using BDF (Beijing Density Functional) programS61,S62 on a single node with two Intel Xeon

E5-2640 v3 processors (16 cores @ 2.6 GHz, 8.0 GB/core), and the OpenMP efficiency was

approximately 50 %.

Following the submission of the iCI result in Fig. 1 of the main text (Ref. S56), the

efficiency of the method was increased by a factor of nearly 20. As such, the same Cmin

values now always lead to smaller variational space, which has allowed for larger calculations

than what was previously possible using either canonical HF orbitals or NOs. These updated

results (not part of the blind challenge) are also presented in Fig. S7 (with dashed lines), cf.

also Table S10 and Fig. S9. These are estimated to be more accurate than the original results

since the selected variational space is larger. Moreover, the updated iCIPT2(NO) results are

again estimated to be more reliable than the corresponding iCIPT2(HF) results since the

former are always lower than the latter for each considered Cmin value. Furthermore, the gap
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Figure S7: iCI results. Original results are plotted with solid lines, updated results (not
part of main study) are plotted with dashed lines.

between the smallest Cmin value and the extrapolated value is smaller for iCIPT2(NO) than

for iCIPT2(HF). The linear extrapolations (again not shown) yield final correlation energies

of ∆EiCIPT2(HF,new) = −866.07± 1.0 mEH and ∆EiCIPT2(NO,new) = −864.15± 0.6 mEH.

For both the original and the updated results, the remaining difference between HF-

and NO-based iCIPT2 (ca. 2 mEH) may be understood in terms of space dimensions, as

the cumulative effect of the unsampled CSFs remains substantial. To verify this argument,

Cr2/Ahlrichs-SVP may be used as an example. The difference between iCIPT2(HF) and

iCIPT2(NO) in this case is within 0.1 mEH, correlating with the fact that the sampled space

of CSFs makes up a considerably larger part of the FCI Hilbert space.

10 FCCR

The size-extensive FCCR method exploits screenings within the single-reference CC for-

malism for constructing the excitation manifold (P) and to exclude insignificant operation
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Table S8: iCIPT2 blind-test correlation energies for benzene with natural orbitals

Cmin Ncfg Ñcsf
a Ñdet

b Evar
c /mEH EPT2

c /mEH Ec/mEH T/sc

1.0× 10−3 14496 17890 50944 −612.591 −204.133 −816.724 379
5.0× 10−4 28188 36448 106317 −656.729 −162.637 −819.366 669
3.0× 10−4 48373 65080 199486 −676.147 −146.237 −822.384 1481
2.0× 10−4 78947 109831 358274 −687.627 −137.072 −824.699 2794
1.5× 10−4 119580 170356 586272 −695.623 −130.780 −826.403 5066
1.0× 10−4 234640 344959 1277001 −707.243 −121.564 −828.807 15206
9.0× 10−5 284068 421316 1585683 −710.440 −119.020 −829.460 22335
8.0× 10−5 353743 529909 2028558 −714.110 −116.113 −830.223 38399
7.0× 10−5 456337 692215 2697171 −718.441 −112.694 −831.135 49238
6.0× 10−5 615593 947846 3759324 −723.616 −108.673 −832.289 77344
5.0× 10−5 878837 1381837 5580152 −729.983 −103.707 −833.690 133551

0.0b −861.05± 0.51

a Number of selected CSFs.
b Estimated number of determinants according to the expression

∑
I
ÑI

csf

NI
csf

N I
det, with N I

det,

N I
csf and Ñ I

csf being the numbers of determinants, CSFs and selected CSFs of orbital
configuration (oCFG) I, respectively.

c (1) CPU: Intel(R) Xeon(R) E5–2640 v3×2, 16 cores; (2) memory: 128 Gb; (3) paral-
lelization: OpenMP, 16 threads.

d Linearly extrapolated result using values of the 9 smallest Cmin. The error bar refers to
the half length of 95% confidence interval.

Figure S8: Linear fit of the correlation energy of benzene (blind test).
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Table S9: iCIPT2 blind-test correlation energies for benzene with Hartree-Fock orbitals

Cmin Ncfg Ñcsf
a Ñdet

b Evar
c /mEH EPT2

c /mEH Ec/mEH T/sc

1.0× 10−3 19811 24862 71137 −589.336 −213.573 −802.909 301
5.0× 10−4 38400 51025 147228 −649.922 −160.205 −810.127 837
3.0× 10−4 54907 76712 225685 −667.714 −145.170 −812.884 1309
2.0× 10−4 75868 109263 333495 −675.959 −139.038 −814.997 2363
1.5× 10−4 103807 150972 480806 −681.083 −135.481 −816.564 3036
1.0× 10−4 180981 269149 921928 −688.358 −130.306 −818.664 9875
9.0× 10−5 214438 320658 1120558 −690.363 −128.831 −819.194 12712
8.0× 10−5 261828 394778 1410356 −692.695 −127.102 −819.797 17447
7.0× 10−5 331831 505250 1849734 −695.422 −125.065 −820.487 26334
6.0× 10−5 444010 683971 2570589 −698.767 −122.563 −821.330 42053
5.0× 10−5 640800 1001148 3869123 −703.066 −119.361 −822.427 72945

0.0b −863.32± 0.54

a Number of selected CSFs.
b Estimated number of determinants according to the expression

∑
I
ÑI

csf

NI
csf

N I
det, with N I

det,

N I
csf and Ñ I

csf being the numbers of determinants, CSFs and selected CSFs of orbital
configuration (oCFG) I, respectively.

c (1) CPU: Intel(R) Xeon(R) E5–2640 v3×2, 16 cores; (2) memory: 128 Gb; (3) paral-
lelization: OpenMP, 16 threads.

d Linearly extrapolated result using values of the 6 smallest Cmin. The error bar refers to
the half length of 95% confidence interval.

Table S10: iCIPT2 correlation energies for benzene with natural orbitals (updated results).

Cmin Ncfg Ñcsf
a Ñdet

b Evar
c /mEH EPT2

c /mEH Ec/mEH T/sc

6.0× 10−5 245224 379662 1379097 −705.099 −122.996 −828.095 491
5.0× 10−5 330089 518448 1932040 −709.899 −119.182 −829.081 670
4.0× 10−5 486177 778940 2991370 −716.354 −114.087 −830.441 1039
3.0× 10−5 830917 1369463 5436028 −725.650 −106.817 −832.467 1834
2.0× 10−5 1809463 3121693 12849733 −740.245 −95.513 −835.758 4273
1.5× 10−5 3134922 5595481 23479710 −751.271 −87.026 −838.298 7597
1.0× 10−5 6555147 12315752 52744912 −766.783 −75.134 −841.918 19299
9.0× 10−6 7869797 14995161 64497488 −770.695 −72.139 −842.834 33344

0.0d −864.15± 0.57

a Number of selected CSFs.
b Estimated number of determinants according to the expression

∑
I
ÑI

csf

NI
csf

N I
det, with N I

det,

N I
csf and Ñ I

csf being the numbers of determinants, CSFs and selected CSFs of orbital con-
figuration (oCFG) I, respectively.

c (1) CPU: Intel(R) Xeon(R) Gold 6240×4, 72 cores; (2) memory: 768 Gb; (3) parallelization:
OpenMP, 72 threads.

d Linearly extrapolated result using values of the 6 smallest Cmin. The error bar refers to
the half length of 95% confidence interval.
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Table S11: iCIPT2 correlation energies for benzene with Hartree-Fock orbitals (updated
results).

Cmin Ncfg Ñcsf
a Ñdet

b Evar
c /mEH EPT2

c /mEH Ec/mEH T/sc

6.0× 10−5 221314 338334 1172202 −689.523 −129.322 −818.846 326
5.0× 10−5 282405 439038 1561473 −692.337 −127.201 −819.539 426
4.0× 10−5 391414 620645 2273564 −696.048 −124.424 −820.473 621
3.0× 10−5 631646 1017094 3856238 −701.315 −120.475 −821.790 1109
2.0× 10−5 1398298 2301712 9150757 −710.687 −113.578 −824.265 2749
1.5× 10−5 2583842 4359388 17861976 −719.137 −107.437 −826.574 5387
1.0× 10−5 6206395 10978445 46457235 −733.630 −96.926 −830.557 14470
9.0× 10−6 7736950 13878500 59119837 −737.772 −93.920 −831.692 20203

0.0b −866.07± 0.99

a Number of selected CSFs.
b Estimated number of determinants according to the expression

∑
I
ÑI

csf

NI
csf

N I
det, with N I

det,

N I
csf and Ñ I

csf being the numbers of determinants, CSFs and selected CSFs of orbital con-
figuration (oCFG) I, respectively.

c (1) CPU: Intel(R) Xeon(R) Gold 6240×4, 72 cores; (2) memory: 768 Gb; (3) parallelization:
OpenMP, 72 threads.

d Linearly extrapolated result using values of the 6 smallest Cmin. The error bar refers to
the half length of 95% confidence interval.

Figure S9: Linear fit of the correlation energy of benzene (updated results).
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Table S12: Linearly extrapolated iCIPT2 correlation energies (Ec in mEH) for benzene
and extrapolation errors (in mEH). A: extrapolation distance; B: standard deviation; C:
half length of 95% confidence interval.

Orbitals Ec A B C CPU/h memory/Gb

Blind Test
NO −861.05 27.36 0.22 0.51 1545 ∼650
HF −863.32 40.89 0.19 0.54 836 ∼650

Updated
NO −864.15 21.32 0.21 0.57 1348 ∼610
HF −866.07 34.38 0.36 0.99 891 ∼610

mostly arising from the nonlinear terms of the working equation.S63 The subsequent FCCR(2)

computes the second-order perturbative correction to FCCR using the entire interacting

space (Q) orthogonal to P generated through [Ĥ, T̂FCCR].S64 For single-reference systems,

FCCR(2’) which approximate the λ̂ amplitudes by T̂ † is also available. All calculations were

performed using the GELLAN programS65 in parallel on Intel Xeon Gold 6148 nodes (40 cores

@ 2.4 GHz).

Table S13: FCCR calculation details (blind test).

Method ∆E/mEH

FCCR(MP) −860.1
FCCR(EN) −865.4
FCCR(avg) −862.8
FCCR(avg) + ϑO corr. −863.0

Table S13 shows the result of FCCR(2’) with the Møller-Plesset (MP) and Epstein-

Nesbet (EN) partitionings with the connectivity threshold ϑC = 0.03 and the operation

threshold ϑO = 3.0 × 10−7 as combined with the exclusion-principle-violating (EPV) form

of the screening,S63 leading to 4,818,644 FCCR cluster amplitudes. The FCI energy is esti-

mated to lie very close to the average of the MP and EN results from various benchmarks

(avg.), which may further be corrected for ϑO based on CCSD, resulting in the estimate

−862.98mEH. This calculation required 0.1M core hours invoking 640 MPI processes. The

interacting space Q for the second-order correction is perfectly distributed to the processes,
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and the memory requirement of the present FCCR(2’) calculation is at most 2GB per process.

Table S14: FCCR calculation details (updated results).

ϑP ∆E/mEH NP E(2)/mEH NQ

5× 10−4 −849.05 109,860 −81.09 2.2× 108

4× 10−4 −852.25 137,421 −62.36 2.6× 108

3× 10−4 −854.93 174,914 −46.71 3.7× 108

2× 10−4 −856.84 229,842 −35.11 6.4× 108

extrap. −862.83 — 0.0 —

A fast and more systematic estimate of the FCI limit is enabled by the extrapolation

of FCCR(2). Table S14 presents an updated FCCR(2) correlation energy (not part of the

blind challenge) along with the second-order correction of the MP partitioning as a function

of the principal screening threshold ϑP . Besides ϑO, the latest implementation of FCCR(2)

controls the excitation manifold in terms of the two screening parameters, ϑP to select the

cluster operators of P perturbatively and ϑG for the generator space (G) to discriminate

strong correlation in P .S64 Except for ϑP , all screening parameters are fixed to be ϑG = 0.01,

ϑO = 10−7 for FCCR, and ϑO = 3.0×10−6 for E(2). Tightening ϑP increases the accuracy of

FCCR(2) according to the increasing dimensions of P and Q. It is found that a linear rela-

tionship holdsS64 between ∆EFCCR(2) and E(2), as shown in Fig. S10, and the best estimate

of FCCR(2) based on the extrapolation is −862.83 mEH. The calculations for the four values

of ϑP in Table S14 required 0.035M, 0.048M, 0.073M and 0.134M core hours, respectively,

using 640 MPI processes. The algorithmic details of the FCCR(2) implementation and other

applications will be elaborated in a separate paper.S64

11 CCSDTQ

The CCSDTQS41,S42 correlation energy of ∆ECCSDTQ = −862.37 mEH was obtained using

the NCC module of the CFOUR programS66–S69 on a single Intel Xeon CPU E5-4620 node (8
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Figure S10: Updated FCCR results. The linear extrapolation of the FCCR(2) energy.

cores @ 2.2 GHz, 15.0 GB/core). Convergence was reached in 10 iterations.

12 Cluster Decomposition

Table S15: Cluster decomposition (L2-norm) of a 5M-determinant ASCI wave function
(with delocalized orbitals) for excitation levels 1 ≤ n ≤ 6.

n |cn| |tn| Ratio/%

1 0.019477 0.019477 100.0
2 0.533103 0.533108 100.0
3 0.064742 0.065137 100.6
4 0.142888 0.014178 9.92
5 0.006201 0.000465 7.50
6 0.008792 0.001948 22.16

Table S15 presents results for a cluster decompositionS70 of an ASCI wave function with
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5.0× 106 determinants (using delocalized orbitals, as described in Sec 8). These results in-

dicate that most of the {c4} (and higher order) CI coefficients come from disconnected terms.

Subsequent to the main study, a cluster decomposition was also carried out on a 4.0× 106

determinant ASCI wave function with localized orbitals (as described in Sec 8.1), as this CI

wave function had a lower variational energy than the previous one (−772 mEH correlation

vs −737 mEH) and was thus a better approximation to the true FCI wave function. The

resulting values are provided in Table S16, which differ slightly from those in Table S15. The

general picture, however, remains the same, in that {c4} and higher order excitations seem

to mostly arise from disconnected terms.

Table S16: Cluster decomposition (L2-norm) of a 4M-determinant ASCI wave function
(with localized orbitals) for excitation levels 1 ≤ n ≤ 6.

n |cn| |tn| Ratio/%

1 0.01777 0.01777 100.0
2 0.55063 0.55063 100.0
3 0.06855 0.06868 100.2
4 0.16486 0.01755 10.65
5 0.00903 0.00076 8.38
6 0.01610 0.00259 16.11
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