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Abstract

We report on the findings of a blind challenge devoted to determining the frozen-

core, full configuration interaction (FCI) ground state energy of the benzene molecule

in a standard correlation-consistent basis set of double-ζ quality. As a broad inter-

national endeavour, our suite of wave function-based correlation methods collectively

represents a diverse view of the high-accuracy repertoire offered by modern electronic

structure theory. In our assessment, the evaluated high-level methods are all found

to qualitatively agree on a final correlation energy, with most methods yielding an

estimate of the FCI value around −863 mEH. However, we find the root-mean-square

deviation of the energies from the studied methods to be considerable (1.3 mEH), which

in light of the acclaimed performance of each of the methods for smaller molecular sys-

tems clearly displays the challenges faced in extending reliable, near-exact correlation

methods to larger systems. While the discrepancies exposed by our study thus empha-

size the fact that the current state-of-the-art approaches leave room for improvement,

we still expect the present assessment to provide a valuable community resource for

benchmark and calibration purposes going forward.
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At first glance, the electronic structure of the benzene molecule is deceptively simple.

Initially proposed by Kekulé in the second half of the 19th century,1,2 the depiction of ben-

zene as consisting of an alternating pattern of single and double bonds between degenerate

carbon atoms was radically novel for its time. Popularly ascribed to a vivid dream of a

serpent biting its own tail, the original conjugated structure was soon nuanced in favour of a

more balanced, D6h-symmetric resonance picture of benzene.3,4 However, studies of the finer

details of its electronic structure continue to be in vogue to this day,5–12 and an account

of its intra- as well as intermolecular physical effects remains a key constraint on a great

number of ab initio simulations in the field of computational (bio-)chemistry.13–22 Even more

so, benzene—alongside, for instance, water—may easily be named among the members of an

exclusive subset of molecules which are identifiable by wider parts of the public. Constituting

the smallest aromatic system composed purely of carbon and hydrogen atoms, benzene rings

are omnipresent throughout most of organic chemistry as recurring and easily recognizable

structural leitmotifs, to the extent that its widespread use as a symbol of the biological and

chemical sciences has become commonplace in society nowadays.

That being said, with its total of six carbon atoms, each bonded to a hydrogen atom,

benzene has so far been deemed too big to allow for a truly high-level description of its

electronic wave function. Even in the modest cc-pVDZ basis set,23 which is the smallest

meaningful one-electron basis for use in correlated calculations, and disregarding the six

inner core molecular orbitals (MOs), the many-electron Hilbert space of benzene is still on

the order of 1035 Slater determinants, making an exact diagonalization of the Hamiltonian

prohibitively expensive. However, given the availability of scalable computational hardware

today and, even more importantly, the extensive array of emerging new methods for yield-

ing near-exact electronic ground state energies, we believe that the time is now ripe for an

ambitious attempt at solving the electronic Schrödinger equation for the ubiquitous benzene

molecule.
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However trivial a problem it might seem, the quest for a numerically near-exact (i.e.,

sub-mEH accuracy) treatment of the electron correlation in benzene is complicated by the

sheer scale of the combinatorial problem associated with distributing 30 electrons among

108 orbitals. As an illustrative example, upon traversing up through the standard cou-

pled cluster24–26 (CC) hierarchy, satisfactory convergence of the correlation energy cannot

be concluded even upon accounting for connected quadruple excitations27,28 (CCSDTQ),

which is the highest level of sophistication possible today for systems of this size.29,30 In

general, assuming a reasonably dominant Hartree-Fock (HF) solution, CCSDTQ is expected

to recover almost all of the remaining discrepancies against exact full configuration inter-

action31–33 (FCI) present in lower-level (CCSD34 and CCSDT35,36) CC models.37,38 In the

case of benzene, CCSDT lowers the energy by a full −36.45 mEH over CCSD, while the

inclusion of connected quadruple excitations adds an additional −2.47 mEH, yielding a total

correlation energy of ∆ECCSDTQ = −862.37 mEH. To put these numbers in perspective, and

to probe whether or not convergence fails to be met at the CCSDTQ level of theory, the

energy increments from connected quadruply and higher excited clusters in the N2 molecule

(at the equilibrium geometry) have previously been found to be −1.61 mEH and −0.23 mEH,

respectively.39 Assuming, for the sake of argument, that higher-level correlation effects are

of the same relative order in benzene, the final correlation energy might be estimated at

about ∆E = −863 mEH (by multiplying N2 results by a factor of 3). The main objective in

the current work is to move beyond this estimate.

In an attempt to substantiate the above projections for what might be expected upon

moving toward a higher level of correlation treatment, extended CI wave function expansions

have been interpreted for the benzene/cc-pVDZ system by means of a cluster decomposi-

tion method40 (cf. the Supporting Information (SI)), which is analogous to the cluster

analysis of the wave function exploited in externally corrected CC approaches.41–49 On the
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whole, these results appear to indicate that most of the quadruply (and higher) excited de-

terminants in the FCI wave function stem from disconnected clusters, suggesting that the

inclusion of connected quintuples, hextuples, etc., in CC theory is relatively insignificant

in comparison, although the above estimate of the FCI correlation energy indicates that

higher–than–quadruply excited clusters may play a nontrivial role when trying to obtain

results accurate to within fractions of a mEH. The accurate determination of the electronic

ground state energy of benzene hence becomes more than an exercise of mere academic

interest. Not only does the benzene molecule constitute a challenging test application to

push the limits of contemporary, near-exact electronic structure theory, but our results will

further allow us to scrutinize the preliminary observations discussed above, namely, to what

extent higher-order connected excitations contribute to the FCI correlation energy for an

archetypal, medium-sized molecular system with no obvious indications of strong electron

correlations.

The present study thus aligns itself with the recent series of meticulous benchmark studies

from the Simons Collaboration on the Many-Electron Problem concerned with model systems

and small transition-metal species.50–52 However, as opposed to these earlier assessments, we

have conducted the present study as a blind challenge with one of us (J.G.) responsible

for compiling all results. This was done in an attempt to conduct an unbiased evaluation

of the various methods used in the present work, as listed in Table 1. Not only are the

results of our study bound to prove valuable to future benchmarks and for the calibration

of future methods across most of electronic structure theory, but the scatter of the resulting

correlation energies further admits a direct assessment of state-of-the-art approaches nearly

a century on from the dawn of modern quantum mechanics,53–55 in particular in terms of

performance transferability in moving from small- to modest-sized molecular compounds.

We will herein refrain from passing judgement on what a tolerable error with respect to our

FCI target amounts to, since the accuracy of any calculation needs to be weighed against the
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computational effort required to obtain a particular result to paint a full picture. As such, we

will report our findings below in an intentionally neutral tone, leaving most interpretations

of the data to the reader.

Table 1: Abbreviations used for the methods included in the blind challenge.

Acronym Method References

ASCI Adaptive Sampling CI 56–60
SHCI Semistochastic Heat-Bath CI 61–67
iCI Iterative CI with Selection 68–71
AS-FCIQMC Adaptive-Shift FCI Quantum Monte Carlo 72–76
DMRG Density Matrix Renormalization Group 77–88
MBE-FCI Many-Body Expanded FCI 89–92
FCCR Full CC Reduction 93
CAD-FCIQMC Cluster-Analysis-Driven FCIQMC 94,95

For the sake of brevity, technical details on the evaluated methods listed in Table 1

and the detailed results obtained in our calculations are collected in the SI. Here, we will

only briefly compare the methods on the basis of their common traits and differences. The

adaptive sampling CI56–60 (ASCI), semistochastic heat-bath CI61–67 (SHCI), and iterative

CI with selection68–71 (iCI) methods all belong to a wider class of selected CI (SCI) meth-

ods,96–108 which approximate the full linear expansion of the FCI wave function by selecting

only important determinants in conjunction with perturbative corrections to account for

any residual correlation. The FCI Quantum Monte Carlo72–75 (FCIQMC) method offers

another approach for sampling the wave function, namely, a stochastic QMC propagation

of the wave function in the many-electron Hilbert space aimed at projecting out the FCI

ground state. The FCIQMC method is most often complemented by an initiator approxima-

tion (i-FCIQMC), but we will here evaluate its most recent version which uses an adaptive

shift76 (AS-FCIQMC) to mitigate the initiator bias in the wave function sampling. Operat-

ing instead using a variational matrix product state Ansatz, density matrix renormalization

group77–88 (DMRG) methods provide an alternative route toward variationally solving the

Schrödinger equation. DMRG methods reduce the exponential scaling of the above methods
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with volume to an exponential scaling in the cross-section area. In the recently proposed

many-body expanded FCI89–92 (MBE-FCI) method, the FCI correlation energy (without re-

course to the electronic wave function) is decomposed and solved for. By enforcing a strict

partitioning of the complete set of MOs into a reference and an expansion space, the residual

correlation in the latter of these two spaces is recovered by means of an MBE in the spatial

MOs of a given system. Finally, two methods founded on CC theory have been evaluated. In

the full CC reduction93 (FCCR) method, cluster projection manifolds and commutator ex-

pressions for higher-level excitations are systematically reduced in order to optimally exploit

the sparsity of the FCI wave function, as recasted using the CC Ansatz. Alternatively, one

can use the semistochastic cluster-analysis-driven FCIQMC (CAD-FCIQMC) approach,94,95

in which, in the spirit of the externally corrected CC methods,41–49 the singly and doubly

excited clusters are iterated in the presence of their three- and four-body counterparts ex-

tracted from FCIQMC (cf. Refs. 109–111 for other ways of merging stochastic FCIQMC or

CC Monte Carlo112,113 with the deterministic CC framework).

Among the evaluated methods, a few make use of extrapolations. In the methods that

involve a perturbative correction as an integral component on top of a variational calcula-

tion (ASCI, SHCI, and iCI), final results may be extrapolated by systematically reducing the

portion of the total correlation energy accounted for by second-order perturbation theory.

In the case of DMRG, extrapolations may be performed towards an infinite bond dimension

estimate. In order to isolate the effect of extrapolation from the bare methods themselves, we

will present both the unextrapolated and extrapolated results. On the other hand, MBE-FCI

and AS-/CAD-FCIQMC make no use of extrapolations of any kind. The FCCR method may

also be augmented by either of the Epstein-Nesbet114,115 or Møller-Plesset116 formulations

of perturbation theory, and while no extrapolations may be directly drawn from individual

FCCR calculations (except for the most recent variant of the theory, cf. the SI), a final

result may be derived using the average of these perturbative corrections in combination
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with adjustments for the internal thresholds.

Besides the methods listed in Table 1, one additional, complementary result has pre-

viously been reported in the literature using the same molecular geometry,117 namely, i-

FCIQMC,118 augmented by perturbation theory.119 It should be mentioned that none of

the methods examined in our study are variational, as those that are formulated on top of

selected CI and DMRG theory have lost this feature upon being corrected by perturbation

theory or extrapolated towards an infinite bond dimension, respectively. In the case of AS-

and i-FCIQMC, one loses a variational bound through stochastic wave function samplings

followed by blocking analyses and the use of the projected form of the correlation energy ex-

pression rather than an expectation value. FCCR and CAD-FCIQMC do not have a bound

as they are based on CC theory, and MBE-FCI is nonvariational due to its expansion in

terms of increments.

The main results of our study are summarized in Figure 1 (with the underlying numerical

data tabulated in the SI). No error bars are provided given that these are derived differently

in the various methods. While our pool of results is too limited to allow for in-depth statistics

to be computed from it (besides a mean value, µ, and a standard deviation, σ), a number

of observations may still be made. In the following, we will make use of mEH as the unit

for reporting correlation energies in order to accentuate differences (recalling that 1 mEH

corresponds to 2.6 kJ/mol).

Our key observations can be summarized as follows: (i) The majority of the methods

evaluated in the present work yield a larger correlation energy (in absolute value) than that

of the CCSDTQ method, in agreement with the general notion that high-level CC methods,

although not bounded by the variational theorem,120 often are so in practice. (ii) Across the

various results, all but those of the three flavours of SCI fall into an interval ranging from
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Figure 1: Frozen-core C6H6/cc-pVDZ correlation energies for the methods of Table 1 along-
side CCSDTQ and i-FCIQMC.118 For the additional results obtained after the blind test was
completed, see the SI.

−863.7 mEH to −862.8 mEH. (iii) Taking into account the finer details of the ASCI, iCI,

and SHCI calculations (cf. the SI), we expect the result of the latter to be more accurate

than the former two, as evidenced by the smallest extrapolation distance among these three

methods, cf. Table 2; these distances (∆Edist) are here meant to serve as an indication of the

extent to which the individual methods rely on extrapolation procedures. (iv) The examples

of stochastic CI calculations included in Figure 1 (i- and AS-FCIQMC) are also observed to

disagree with one another, however only by half of that of their deterministic counterparts.

AS-FCIQMC, which corrects for the undersampling bias of noninitiator determinants, is ex-

pected to be the more accurate of these two. (v) The extrapolated DMRG result is in good

agreement with the remaining methods listed in point (ii). In addition, it is observed from

Table 2 to be far less reliant on an extrapolation of the energy than the tested SCI meth-
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ods. (vi) Likewise, the CAD-FCIQMC and MBE-FCI results, both of which have not been

extrapolated, agree with each other to within 0.4 mEH. (vii) Viewing CAD-FCIQMC as a

correction to the underlying AS-FCIQMC wave function, calculating the correlation energy

by means of the CC rather than the CI Ansatz is observed to slightly reduce the absolute

values of the AS-FCIQMC energies, by 0.3 mEH for the most accurate AS-FCIQMC instan-

taneous and averaged wave functions equilibrated using a population of 2 billion walkers.

The deterministic CAD-FCIQMC iterations reduce the change in the AS-FCIQMC correla-

tion energies, when increasing the walker population from 1 to 2 billion, by a factor of about

2 (from 1.1 to 0.5 mEH, cf. the SI). For AS-FCIQMC, the change in energy is a reflection

of the initiator bias (or approximation) in addition to the smaller stochastic error. (viii) As

further discussed in the SI, the FCCR results exhibit a pronounced dependence on the choice

of perturbative treatment, giving rise to an intrinsic variance of 5.3 mEH. However, the final,

perturbatively corrected FCCR correlation energy is estimated to lie in close proximity of

the remaining non-SCI results. (ix) To that end, the results of the only four methods, which

have not been aided by second-order perturbation theory (DMRG, MBE-FCI, as well as AS-

and CAD-FCIQMC), are observed to coincide to a reasonable extent, spanning an interval

of only 0.9 mEH.

Table 2: Extrapolation distances, ∆Edist (in mEH), involved in computing the final ASCI,
iCI, SHCI, and DMRG results in Fig. 1. These are defined by the difference between the final
computed energy, ∆Efinal, and the extrapolated energy, ∆Eextrap. (final variational energies,
that is, in the absence of perturbation theory, are presented as ∆Evar.). For the SCI methods,
extrapolations are performed toward the limit of vanishing perturbative correction, while the
variational DMRG energy is extrapolated toward an infinite bond dimension. See the SI for
results obtained after the blind test was completed.

Method ∆Evar. ∆Efinal ∆Eextrap. ∆Edist

ASCI −737.1 −835.4 −860.0 −24.6
iCI −730.0 −833.7 −861.1 −27.4
SHCI −827.2 −852.8 −864.2 −11.4
DMRG −859.2 −859.2 −862.8 −3.6
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All of the methods evaluated herein are the products of years of intense development,

and most of the computed results in Figure 1 have required a considerable amount of compu-

tational resources to obtain. Due to its high polynomial scaling and memory requirements,

the CCSDTQ model is unlikely to enable near-exact results for molecular systems signifi-

cantly larger than benzene. Be that as it may, our CCSDTQ result was still obtained using

only 5.5k core hours using a single thread on a multicore node equipped with 120 GB of

physical memory, indicating that high-level CC theory represents an affordable, yet robust

alternative to many of the other methods tested in our study for problems of a similar size

and with similar nature of the involved electron correlation. In comparison, the FCCR re-

sult in Figure 1 required a total of 0.1M core hours (using 640 parallel processes) across

all of the involved calculations, while the extrapolated DMRG result required 0.08M core

hours in total, distributed across 100− 200 cores. The DMRG method generally requires a

non-negligible amount of memory, on par or greater than the CC requirements above, while

these may be reduced somewhat in the FCCR method. The extrapolated ASCI, SHCI, and

iCI results were all obtained in parallel, consuming 0.3k, 2.8k, and 1.5k core hours in the

process, respectively, thus all offering relatively inexpensive compromises in comparison with

some of the other methods in Figure 1. Again, the memory requirements involved in running

the largest possible CI spaces will ultimately hinder their application to significantly larger

problem sizes and basis sets. Both the AS-FCIQMC and MBE-FCI results were obtained in a

highly parallel manner, but with minimal memory demands in the case of the latter method.

In the case of AS-FCIQMC, a total of 0.06M core hours were consumed, distributed over a

group of either 100 or 200 multicore nodes, while the MBE-FCI calculation was parallelized

over 128 nodes for a total of 1.7M core hours, by far the most expensive of all the evaluated

methods. Finally, the CAD-FCIQMC correlation energy was computed in just a few hours

on a single node, initialized from the converged AS-FCIQMC solution.

In summary, while all of the methods of our assessment yield results in general agreement
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with one another, the overall low resolution, as exemplified by a substantial standard devia-

tion across our sample set (in excess of 1.3 mEH), ultimately hinders a precise determination

of the FCI correlation energy to within a small fraction of a mEH. That being said, this

uncertainty is most likely too pessimistic, and our findings do indeed seem to indicate, taking

into account also the post blind-test energies of some of the methods, that the most plau-

sible frozen-core correlation energy—for the current geometry in the cc-pVDZ basis set—is

around −863 mEH, in accordance with our preliminary estimate in the introduction and

earlier projections.121 On this basis, we are led to conclude that the electronic structure of

benzene in its equilibrium geometry is predominantly dynamic in character.

More generally, in particular in view of its format as a blind challenge, our findings collec-

tively represent an unbiased assessment of a diverse set of current state-of-the-art methods.

As a consequence of the fact that the sophistication and application range of near-exact

electronic structure continue to be improved, we end by strongly encouraging the contin-

ued benchmarking of future correlation methods aimed at FCI against the results presented

here. To that effect, we note that updated ASCI, SHCI, iCI, and FCCR results—made

possible solely by improvements to the efficiencies of their implementations or the use of

optimized MOs in combination with larger correlation spaces—were submitted following the

compilation of the results in Fig. 1. These results are discussed in the SI.
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