OK for Toto

This commit is contained in:
Pierre-Francois Loos 2020-08-23 14:26:47 +02:00
parent 761bbc678f
commit fb3136e762

View File

@ -43,7 +43,7 @@
% Abstract % Abstract
\begin{abstract} \begin{abstract}
Following the recent work of Eriksen \textit{et al.} [\href{https://arxiv.org/abs/2008.02678}{arXiv:2008.02678 [physics.chem-ph]}], we report the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy of the ground state of the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of $-8xx.xx$ m$E_h$ which agrees with the best theoretical estimate of $-863$ m$E_h$ proposed by Eriksen \textit{et al.} using an extensive array of highly-accurate new electronic structure methods. Following the recent work of Eriksen \textit{et al.} [\href{https://arxiv.org/abs/2008.02678}{arXiv:2008.02678 [physics.chem-ph]}], we report the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy of the ground state of the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of \titou{$-8xx.xx$} m$E_h$ which agrees with the best theoretical estimate of $-863$ m$E_h$ proposed by Eriksen \textit{et al.} using an extensive array of highly-accurate new electronic structure methods.
\end{abstract} \end{abstract}
% Title % Title
@ -128,11 +128,11 @@ As mentioned above, SCI+PT2 methods rely heavily on extrapolation, especially wh
We then linearly extrapolate the total SCI energy to $E_\text{PT2} = 0$ (which effectively corresponds to the FCI limit) using the two largest SCI wave functions. We then linearly extrapolate the total SCI energy to $E_\text{PT2} = 0$ (which effectively corresponds to the FCI limit) using the two largest SCI wave functions.
Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by \titou{the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.} Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by \titou{the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.}
We believe that it provides a very safe estimate of the extrapolation error. We believe that it provides a very safe estimate of the extrapolation error.
Note that, unlike excited-state calculations where it is important to enforce that the wave functions are `eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Applencourt_2018} the present wave functions do not fulfil this property as we aim for the lowest energy of a single state. We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero \toto{($\sim 5 \times 10^{-3}$ a.u.)}. Note that, unlike excited-state calculations where it is important to enforce that the wave functions are `eigenfunctions of the $\Hat{S}^2$ spin operator, \cite{Applencourt_2018} the present wave functions do not fulfil this property as we aim for the lowest energy of a single state. We have found that $\expval*{\Hat{S}^2}$ is, nonetheless, very close to zero ($\sim 5 \times 10^{-3}$ a.u.).
The corresponding energies are reported in Table \ref{tab:NOvsLO} as functions of the number of determinants in the variational space $N_\text{det}$. The corresponding energies are reported in Table \ref{tab:NOvsLO} as functions of the number of determinants in the variational space $N_\text{det}$.
A second run has been performed with localized orbitals. A second run has been performed with localized orbitals.
Starting from the same natural orbitals, a Boys-Foster localization procedure \cite{Boys_1960} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, vi) the higher-lying $\sigma$ orbitals, and vii) the higher-lying $\pi$ orbitals. Like Pipek-Mezey, \cite{Pipek_1989} this choice of orbital windows allows to preserve a strict $\sigma$-$\pi$ separation in planar systems like benzene. \toto{T2: add MO indices (see comments in tex file).} Starting from the same natural orbitals, a Boys-Foster localization procedure \cite{Boys_1960} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, vi) the higher-lying $\sigma$ orbitals, and vii) the higher-lying $\pi$ orbitals. Like Pipek-Mezey, \cite{Pipek_1989} this choice of orbital windows allows to preserve a strict $\sigma$-$\pi$ separation in planar systems like benzene.
% MO Indices: % MO Indices:
%[1-6] # Core %[1-6] # Core
%[7,8,9,10,11,12,13,14,15,16,17,18] # Sigma occ %[7,8,9,10,11,12,13,14,15,16,17,18] # Sigma occ
@ -154,7 +154,7 @@ The three flavours of SCI fall into an interval ranging from $-860.0$ m$E_h$ (AS
The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer. The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer.
Each Irene's AMD node is a dual-socket AMD Rome (Epyc) CPU@2.60 GHz with 256GiB of RAM, with a total of 64 physical CPU cores per socket. Each Irene's AMD node is a dual-socket AMD Rome (Epyc) CPU@2.60 GHz with 256GiB of RAM, with a total of 64 physical CPU cores per socket.
These nodes are connected via Infiniband HDR100. These nodes are connected via Infiniband HDR100.
The first step of the calculation, \ie, performing a CIPSI calculation up to $N_\text{det} \sim 10^7$ with Hartree-Fock orbitals in order to produce natural orbitals, takes roughly 24 hours \toto{on a single node}, and reaching the same number of determinants with natural orbitals or localized orbitals takes roughly the same amount of time. \toto{A second 24-hour run on 10 distributed nodes was performed to push the selection to 80M determinants, and a third distributed run using 40 nodes was used to reach 160M determinants.} The first step of the calculation, \ie, performing a CIPSI calculation up to $N_\text{det} \sim 10^7$ with Hartree-Fock orbitals in order to produce natural orbitals, takes roughly 24 hours on a single node, and reaching the same number of determinants with natural orbitals or localized orbitals takes roughly the same amount of time. A second 24-hour run on 10 distributed nodes was performed to push the selection to $8 \times 10^7$ determinants, and a third distributed run using 40 nodes was used to reach 160M determinants.
%%$ FIG. 1 %%% %%$ FIG. 1 %%%
\begin{figure*} \begin{figure*}
@ -209,6 +209,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
20\,971\,520 & $-231.474\,019$ & $-231.561\,315(430)$ & $-231.560\,063(424)$ & $-231.508\,714$ & $-231.564\,707(275)$ & $-231.564\,223(273)$ \\ 20\,971\,520 & $-231.474\,019$ & $-231.561\,315(430)$ & $-231.560\,063(424)$ & $-231.508\,714$ & $-231.564\,707(275)$ & $-231.564\,223(273)$ \\
41\,943\,040 & $-231.487\,978$ & $-231.564\,529(382)$ & $-231.563\,593(377)$ & $-231.519\,122$ & $-231.567\,419(240)$ & $-231.567\,069(238)$ \\ 41\,943\,040 & $-231.487\,978$ & $-231.564\,529(382)$ & $-231.563\,593(377)$ & $-231.519\,122$ & $-231.567\,419(240)$ & $-231.567\,069(238)$ \\
83\,886\,080 & $-231.501\,334$ & $-231.566\,994(317)$ & $-231.566\,325(314)$ & $-231.528\,568$ & $-231.570\,084(199)$ & $-231.569\,832(198)$ \\ 83\,886\,080 & $-231.501\,334$ & $-231.566\,994(317)$ & $-231.566\,325(314)$ & $-231.528\,568$ & $-231.570\,084(199)$ & $-231.569\,832(198)$ \\
167\,772\,160 & \\
\end{tabular} \end{tabular}
\end{ruledtabular} \end{ruledtabular}
\end{table*} \end{table*}
@ -239,7 +240,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
% Acknowledgements % Acknowledgements
This work was performed using HPC resources from GENCI-TGCC (2020-gen1738) and from CALMIP (Toulouse) under allocation 2020-18005.\toto{L'allocation Grand-Challenge est finie!} This work was performed using HPC resources from GENCI-TGCC (2020-gen1738) and from CALMIP (Toulouse) under allocation 2020-18005.
\bibliography{benzene} \bibliography{benzene}