minor correction

This commit is contained in:
Pierre-Francois Loos 2020-08-25 18:35:40 +02:00
parent a04354ac1f
commit e50e6bbb77
3 changed files with 57 additions and 28 deletions

View File

@ -1,13 +1,36 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-08-24 16:21:19 +0200
%% Created for Pierre-Francois Loos at 2020-08-25 18:15:28 +0200
%% Saved with string encoding Unicode (UTF-8)
@article{Eriksen_2019b,
Author = {J. J. Eriksen and J. Gauss},
Date-Added = {2020-08-25 18:14:27 +0200},
Date-Modified = {2020-08-25 18:15:20 +0200},
Doi = {10.1021/acs.jpclett.9b02968},
Journal = {J. Phys. Chem. Lett.},
Pages = {7910--7915},
Title = {Generalized Many-Body Expanded Full Configuration Interaction Theory},
Volume = {27},
Year = {2019}}
@article{Eriksen_2017,
Author = {J. J. Eriksen and F. Lipparini and J. Gauss},
Date-Added = {2020-08-25 18:12:46 +0200},
Date-Modified = {2020-08-25 18:13:55 +0200},
Doi = {10.1021/acs.jpclett.7b02075},
Journal = {J. Phys. Chem. Lett.},
Pages = {4633--4639},
Title = {Virtual Orbital Many-Body Expansions: A Possible Route towards the Full Configuration Interaction Limit},
Volume = {8},
Year = {2017},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jpclett.7b02075}}
@article{Sauer_2009,
Author = {Sauer, Stephan P. A. and Schreiber, Marko and Silva-Junior, Mario R. and Thiel, Walter},
Date-Added = {2020-08-24 16:15:18 +0200},
@ -18,7 +41,8 @@
Pages = {555--564},
Title = {Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3},
Volume = {5},
Year = {2009}}
Year = {2009},
Bdsk-Url-1 = {https://doi.org/10.1021/ct800256j}}
@article{Schreiber_2008,
Author = {Schreiber, M. and Silva-Junior, M. R. and Sauer, S. P. A. and Thiel, W.},
@ -29,7 +53,8 @@
Pages = {134110},
Title = {Benchmarks for Electronically Excited States: CASPT2, CC2, CCSD and CC3},
Volume = 128,
Year = 2008}
Year = 2008,
Bdsk-Url-1 = {https://doi.org/10.1063/1.2889385}}
@article{Silva-Junior_2010a,
Author = {Silva-Junior, M. R. and Schreiber, M. and Sauer, S. P. A. and Thiel, W.},
@ -40,7 +65,8 @@
Pages = {104103},
Title = {Benchmarks for Electronically Excited States: Time-Dependent Density Functional Theory and Density Functional Theory Based Multireference Configuration Interaction},
Volume = 129,
Year = 2008}
Year = 2008,
Bdsk-Url-1 = {https://doi.org/10.1063/1.2973541}}
@article{Silva-Junior_2010b,
Author = {Silva-Junior, M. R. and Sauer, S. P. A. and Schreiber, M. and Thiel, W.},
@ -51,7 +77,8 @@
Pages = {453--465},
Title = {Basis Set Effects on Coupled Cluster Benchmarks of Electronically Excited States: CC3, CCSDR(3) and CC2},
Volume = 108,
Year = 2010}
Year = 2010,
Bdsk-Url-1 = {https://doi.org/10.1080/00268970903549047}}
@article{Silva-Junior_2010c,
Author = {Silva-Junior, M. R. and Schreiber, M. and Sauer, S. P. A. and Thiel, W.},
@ -62,7 +89,8 @@
Pages = {174318},
Title = {Benchmarks of Electronically Excited States: Basis Set Effecs on {{CASPT2}} Results},
Volume = 133,
Year = 2010}
Year = 2010,
Bdsk-Url-1 = {https://doi.org/10.1063/1.3499598}}
@article{Boys_1960,
Author = {J. M. Foster and S. F. Boys},
@ -424,10 +452,10 @@
Year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRevLett.121.113001}}
@article{Eriksen_2019,
@article{Eriksen_2019a,
Author = {J. J. Eriksen and J. Gauss},
Date-Added = {2020-08-16 13:35:02 +0200},
Date-Modified = {2020-08-16 13:35:51 +0200},
Date-Modified = {2020-08-25 18:15:28 +0200},
Doi = {10.1021/acs.jctc.9b00456},
Journal = {J. Chem. Theory Comput.},
Pages = {4873},

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 967358, 18303]
NotebookDataLength[ 967360, 18303]
NotebookOptionsPosition[ 962105, 18206]
NotebookOutlinePosition[ 962498, 18222]
CellTagsIndexPosition[ 962455, 18219]
NotebookOutlinePosition[ 962499, 18222]
CellTagsIndexPosition[ 962456, 18219]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@ -18206,7 +18206,7 @@ Cell[BoxData[
},
WindowSize->{1184, 1394},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 13, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"ad7ac4fb-d7dd-4a37-9960-87ba52ede3bd"
]
@ -18253,51 +18253,51 @@ Cell[485078, 9144, 253860, 4746, 584, "Output",ExpressionUUID->"f08a5516-ecb9-4b
}, Open ]],
Cell[CellGroupData[{
Cell[738975, 13895, 8100, 205, 896, "Input",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
Cell[747078, 14102, 1618, 25, 70, "Output",ExpressionUUID->"70b3141b-5f73-46ce-a120-e28e26a497f7"],
Cell[748699, 14129, 1619, 25, 70, "Output",ExpressionUUID->"b622dec9-d93a-44a3-973b-53c6aa852652"],
Cell[750321, 14156, 195942, 3568, 70, "Output",ExpressionUUID->"8d3b739a-d028-4230-b557-d5db482643b2"]
Cell[747078, 14102, 1618, 25, 34, "Output",ExpressionUUID->"70b3141b-5f73-46ce-a120-e28e26a497f7"],
Cell[748699, 14129, 1619, 25, 34, "Output",ExpressionUUID->"b622dec9-d93a-44a3-973b-53c6aa852652"],
Cell[750321, 14156, 195942, 3568, 565, "Output",ExpressionUUID->"8d3b739a-d028-4230-b557-d5db482643b2"]
}, Open ]],
Cell[CellGroupData[{
Cell[946300, 17729, 420, 9, 30, "Input",ExpressionUUID->"ba14da0a-87ae-46da-85c2-b124d0f9c105"],
Cell[946723, 17740, 278, 5, 70, "Output",ExpressionUUID->"172c6c74-0ddd-4b88-801f-ed238e92e91d"]
Cell[946723, 17740, 278, 5, 34, "Output",ExpressionUUID->"172c6c74-0ddd-4b88-801f-ed238e92e91d"]
}, Open ]],
Cell[CellGroupData[{
Cell[947038, 17750, 212, 4, 30, "Input",ExpressionUUID->"3e45b97c-e088-4c82-99ef-15e7d70333ed"],
Cell[947253, 17756, 238, 4, 70, "Output",ExpressionUUID->"482a00d7-a1a8-40be-82e4-7361552f8d24"]
Cell[947253, 17756, 238, 4, 34, "Output",ExpressionUUID->"482a00d7-a1a8-40be-82e4-7361552f8d24"]
}, Open ]],
Cell[CellGroupData[{
Cell[947528, 17765, 116, 2, 30, "Input",ExpressionUUID->"12da2fba-f4a2-4f36-9b70-0977ea98aa96"],
Cell[947647, 17769, 2684, 78, 70, "Output",ExpressionUUID->"a4fce446-6d7d-44bb-8eda-8363e14b342d"]
Cell[947647, 17769, 2684, 78, 98, "Output",ExpressionUUID->"a4fce446-6d7d-44bb-8eda-8363e14b342d"]
}, Open ]],
Cell[950346, 17850, 1975, 59, 79, "Input",ExpressionUUID->"3c63494d-0a28-4d52-b82f-5fa01ee388d7"],
Cell[CellGroupData[{
Cell[952346, 17913, 677, 19, 33, "Input",ExpressionUUID->"bb7c7fa2-e87a-461f-bf8e-2d5b920e7e5f"],
Cell[953026, 17934, 2089, 60, 70, "Output",ExpressionUUID->"d086efb9-2f73-4004-98d7-80886efc5243"]
Cell[953026, 17934, 2089, 60, 77, "Output",ExpressionUUID->"d086efb9-2f73-4004-98d7-80886efc5243"]
}, Open ]],
Cell[CellGroupData[{
Cell[955152, 17999, 234, 4, 30, "Input",ExpressionUUID->"fb7d5558-fd2e-4127-9a0d-1eb25ec9ac64"],
Cell[955389, 18005, 219, 4, 70, "Output",ExpressionUUID->"315dd49f-4ced-4ec2-93c8-e1f975c23fac"]
Cell[955389, 18005, 219, 4, 34, "Output",ExpressionUUID->"315dd49f-4ced-4ec2-93c8-e1f975c23fac"]
}, Open ]],
Cell[CellGroupData[{
Cell[955645, 18014, 194, 3, 30, "Input",ExpressionUUID->"58dbc827-bfeb-4b41-bd51-761724b81a5c"],
Cell[955842, 18019, 195, 3, 70, "Output",ExpressionUUID->"6e064dd9-efc0-4032-85ea-c45452551709"]
Cell[955842, 18019, 195, 3, 34, "Output",ExpressionUUID->"6e064dd9-efc0-4032-85ea-c45452551709"]
}, Open ]],
Cell[CellGroupData[{
Cell[956074, 18027, 128, 2, 30, "Input",ExpressionUUID->"b21de86e-c1f5-48c5-8892-7a9be82adb1b"],
Cell[956205, 18031, 195, 3, 70, "Output",ExpressionUUID->"05abd436-38fc-4934-8a44-9b687c70ad4a"]
Cell[956205, 18031, 195, 3, 34, "Output",ExpressionUUID->"05abd436-38fc-4934-8a44-9b687c70ad4a"]
}, Open ]],
Cell[CellGroupData[{
Cell[956437, 18039, 1375, 41, 75, "Input",ExpressionUUID->"7325d99b-25ff-4080-9c55-fe88f51bc7fa"],
Cell[957815, 18082, 278, 6, 70, "Output",ExpressionUUID->"4f4d5a30-cc54-48f6-895e-18717701761f"],
Cell[958096, 18090, 272, 6, 70, "Output",ExpressionUUID->"7c31df32-8329-427d-986b-c782115d01e1"]
Cell[957815, 18082, 278, 6, 34, "Output",ExpressionUUID->"4f4d5a30-cc54-48f6-895e-18717701761f"],
Cell[958096, 18090, 272, 6, 34, "Output",ExpressionUUID->"7c31df32-8329-427d-986b-c782115d01e1"]
}, Open ]],
Cell[CellGroupData[{
Cell[958405, 18101, 509, 14, 52, "Input",ExpressionUUID->"5d82dd32-c3b1-4401-93b3-6a427f759fd0"],
Cell[958917, 18117, 1150, 29, 70, "Output",ExpressionUUID->"24dbd7fd-4a7f-405f-bab3-00b41d675f8f"]
Cell[958917, 18117, 1150, 29, 44, "Output",ExpressionUUID->"24dbd7fd-4a7f-405f-bab3-00b41d675f8f"]
}, Open ]],
Cell[CellGroupData[{
Cell[960104, 18151, 275, 5, 30, "Input",ExpressionUUID->"11276897-ac60-4098-bfe3-804e94f6b5a8"],
Cell[960382, 18158, 1112, 25, 70, "Output",ExpressionUUID->"1d05d124-17d0-4b64-8237-0ac9d00311ee"]
Cell[960382, 18158, 1112, 25, 65, "Output",ExpressionUUID->"1d05d124-17d0-4b64-8237-0ac9d00311ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[961531, 18188, 225, 4, 30, "Input",ExpressionUUID->"b22ca888-a8e8-4120-b6e9-9321f209da71"],

View File

@ -59,7 +59,7 @@ Following a similar goal, we have recently proposed a large set of highly-accura
% The context
In a recent preprint, \cite{Eriksen_2020} Eriksen \textit{et al.}~have proposed a blind test for a particular electronic structure problem inviting several groups around the world to contribute to this endeavour.
In addition to coupled cluster theory with singles, doubles, triples, and quadruples (CCSDTQ), \cite{Oliphant_1991,Kucharski_1992} a large panel of highly-accurate, emerging electronic structure methods were considered:
(i) the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2018,Eriksen_2019}
(i) the many-body expansion FCI (MBE-FCI), \cite{Eriksen_2017,Eriksen_2018,Eriksen_2019a,Eriksen_2019b}
(ii) three SCI methods including a second-order perturbative correction (ASCI, \cite{Tubman_2016,Tubman_2018,Tubman_2020} iCI, \cite{Liu_2016} and SHCI \cite{Holmes_2016,Holmes_2017,Sharma_2017}),
(iii) a selected coupled-cluster theory method which also includes a second-order perturbative correction (FCCR), \cite{Xu_2018}
(iv) the density-matrix renornalization group approach (DMRG), \cite{White_1992} and
@ -69,7 +69,7 @@ Soon after, Lee \textit{et al.}~reported phaseless auxiliary-field quantum Monte
% The system
The target application is the non-relativistic frozen-core correlation energy of the ground state of the benzene molecule in the cc-pVDZ basis.
The geometry of benzene has been computed at the MP2/6-31G* level and it can be found in the supporting information of Ref.~\onlinecite{Eriksen_2020}.
The geometry of benzene has been computed at the MP2/6-31G* level and it can be found in the supporting information of Ref.~\onlinecite{Eriksen_2020} alongside its nuclear repulsion and Hartree-Fock energies.
This corresponds to an active space of 30 electrons and 108 orbitals, \ie, the Hilbert space of benzene is of the order of $10^{35}$ Slater determinants.
Needless to say that this size of Hilbert space cannot be tackled by exact diagonalization with current architectures.
The correlation energies reported in Ref.~\onlinecite{Eriksen_2020} are gathered in Table \ref{tab:energy} alongside the best ph-AFQMC estimate from Ref.~\onlinecite{Lee_2020} based on a CAS(6,6) trial wave function.
@ -91,6 +91,7 @@ The outcome of this work is nicely summarized in the abstract of Ref.~\onlinecit
CCSDTQ & $-862.4$ & \onlinecite{Eriksen_2020} \\
DMRG & $-862.8(7)$ & \onlinecite{Eriksen_2020} \\
FCCR(2) & $-863.0$ & \onlinecite{Eriksen_2020} \\
MBE-FCI & $-863.0$ & \onlinecite{Eriksen_2020} \\
CAD-FCIQMC & $-863.4$ & \onlinecite{Eriksen_2020} \\
AS-FCIQMC & $-863.7(3)$ & \onlinecite{Eriksen_2020} \\
SHCI & $-864.2(2)$ & \onlinecite{Eriksen_2020} \\