almost done with note

This commit is contained in:
Pierre-Francois Loos 2020-08-22 09:46:07 +02:00
parent b883906b87
commit 7ddfc221d1
7 changed files with 282 additions and 266 deletions

View File

@ -21,3 +21,4 @@
5892976 -231.43454648 -231.55441275 0.00059892 -231.55185712 0.00058615
11786019 -231.44370625 -231.55550485 0.00055109 -231.55332245 0.00054034
23572080 -231.45375768 -231.55855354 0.00051764 -231.55667052 0.00050834
47144174 -231.46449337 -231.56037965 0.00046967 -231.55882970 0.00046208

View File

@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 469924, 8917]
NotebookOptionsPosition[ 467997, 8877]
NotebookOutlinePosition[ 468390, 8893]
CellTagsIndexPosition[ 468347, 8890]
NotebookDataLength[ 471035, 8924]
NotebookOptionsPosition[ 469108, 8884]
NotebookOutlinePosition[ 469501, 8900]
CellTagsIndexPosition[ 469458, 8897]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@ -39,7 +39,7 @@ mathpazo,xcolor,bm,mhchem,inputenc,fontenc,txfonts}\>\"", "}"}]}]}], "]"}],
CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, {
3.733131339213026*^9, 3.733131352923026*^9}, {3.797008990917596*^9,
3.797008999040923*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"ac5d519b-06f4-49c4-86a7-701dc41bd48c"],
CellLabel->"In[4]:=",ExpressionUUID->"ac5d519b-06f4-49c4-86a7-701dc41bd48c"],
Cell[BoxData[
RowBox[{
@ -47,7 +47,7 @@ Cell[BoxData[
InitializationCell->True,
CellChangeTimes->{{3.7208031947801647`*^9, 3.7208032000677156`*^9}, {
3.7208034541742477`*^9, 3.720803455246439*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"e654bc3b-6501-4977-90c8-b8904fd5ec90"]
CellLabel->"In[6]:=",ExpressionUUID->"e654bc3b-6501-4977-90c8-b8904fd5ec90"]
}, Closed]],
Cell[CellGroupData[{
@ -72,8 +72,7 @@ Cell[BoxData[{
3.807025314769651*^9}, {3.8070254940806017`*^9, 3.807025494241976*^9}, {
3.80702577364151*^9, 3.807025793957727*^9}, {3.807029968143608*^9,
3.807029969788039*^9}},
CellLabel->
"In[237]:=",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
CellLabel->"In[7]:=",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
Cell[CellGroupData[{
@ -272,8 +271,7 @@ Cell[BoxData[{
3.806838361765071*^9, 3.806838364562574*^9}, 3.8068384074135437`*^9,
3.806926716461219*^9, {3.807025344397726*^9, 3.807025348790187*^9}, {
3.807029983522843*^9, 3.807030011586466*^9}},
CellLabel->
"In[239]:=",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
CellLabel->"In[9]:=",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
Cell[BoxData[
TagBox[
@ -297,7 +295,8 @@ Cell[BoxData[
14.086087162513117`, -739.1511171000218}, {
14.77923434307306, -751.9313671000134}, {
15.472381523633006`, -764.0102371000239}, {
16.16552870419295, -775.6955871000173}}]},
16.16552870419295, -775.6955871000173}, {
16.8586758847529, -786.8946071000096}}]},
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[Large],
LineBox[{{7.154615356913663, -797.7025771000115}, {
7.847762537473608, -793.7577771000122}, {
@ -312,7 +311,8 @@ Cell[BoxData[
14.086087162513117`, -830.3180271000201}, {
14.77923434307306, -833.441477100024}, {
15.472381523633006`, -836.4835171000209}, {
16.16552870419295, -840.7488671000181}}]},
16.16552870419295, -840.7488671000181}, {
16.8586758847529, -842.8873571000111}}]},
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[Large],
LineBox[{{7.154615356913663, -750.4046271000107}, {
7.847762537473608, -760.6578371000126}, {
@ -327,7 +327,8 @@ Cell[BoxData[
14.086087162513117`, -828.903377100005}, {
14.77923434307306, -832.339687100017}, {
15.472381523633006`, -835.6323271000008}, {
16.16552870419295, -840.0816371000133}}]}}, {
16.16552870419295, -840.0816371000133}, {
16.8586758847529, -842.4038671000176}}]}}, {
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large],
GeometricTransformationBox[InsetBox[
FormBox[
@ -364,7 +365,8 @@ Cell[BoxData[
JoinedCurveBox[NCache[
Line[{Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}],
Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}],
Line[{Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
Line[{
Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]],
CurveClosed->True]}}],
StripOnInput->False,
@ -388,7 +390,8 @@ Cell[BoxData[
14.086087162513117`, -739.1511171000218}}, {{
14.77923434307306, -751.9313671000134}}, {{
15.472381523633006`, -764.0102371000239}}, {{
16.16552870419295, -775.6955871000173}}}]},
16.16552870419295, -775.6955871000173}}, {{
16.8586758847529, -786.8946071000096}}}]},
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[Large],
GeometricTransformationBox[InsetBox[
FormBox[
@ -422,7 +425,8 @@ Cell[BoxData[
14.086087162513117`, -830.3180271000201}}, {{
14.77923434307306, -833.441477100024}}, {{
15.472381523633006`, -836.4835171000209}}, {{
16.16552870419295, -840.7488671000181}}}]},
16.16552870419295, -840.7488671000181}}, {{
16.8586758847529, -842.8873571000111}}}]},
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[Large],
GeometricTransformationBox[InsetBox[
FormBox[
@ -458,7 +462,8 @@ Cell[BoxData[
14.086087162513117`, -828.903377100005}}, {{
14.77923434307306, -832.339687100017}}, {{
15.472381523633006`, -835.6323271000008}}, {{
16.16552870419295, -840.0816371000133}}}]}}, {
16.16552870419295, -840.0816371000133}}, {{
16.8586758847529, -842.4038671000176}}}]}}, {
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large]},
{RGBColor[0,
NCache[
@ -1163,7 +1168,6 @@ sFXE/3Z5B/T4BgDcLObh
115.84699999999998`, 11.8656}, {115.59199999999998`,
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
115.17299999999999`, 16.6484}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
@ -1896,7 +1900,6 @@ nNtwLdhhhwPQwRFqEPccCnaQXf7CQ+++GsT/i4IdNqg+aZ63VtVhw8OXUzd1
BDuI9ni9YjFRdZDwCPgjkY7gc4L06yH4sPh7kaX9bXqtGpx/6rDT2sw6TTgf
5l9Y+kDnw9IHAE5j9eo=
"]],
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1,
3, 3}, {0, 1, 0}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {
@ -2213,7 +2216,6 @@ ofpJ5eWskzwOpw47rc2cZw7ng+011YLz3xQDA9xb1UFmo9h8JgUuB7+LE2P+
JavA7btwNeyNvjSCD3ansbKD/K4F+1L7pB3Q+TD1X/Z93JpuJgI1X8XBfc3R
5QwzhBwMtFYKX0hRhfNh7oHxIeFg5iAL8ni8HkZ6gfEBk4bzQw==
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
@ -2958,7 +2960,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -739.1511171000218}, {
14.77923434307306, -751.9313671000134}, {
15.472381523633006`, -764.0102371000239}, {
16.16552870419295, -775.6955871000173}}]}, {
16.16552870419295, -775.6955871000173}, {
16.8586758847529, -786.8946071000096}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
@ -2978,7 +2981,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -830.3180271000201}, {
14.77923434307306, -833.441477100024}, {
15.472381523633006`, -836.4835171000209}, {
16.16552870419295, -840.7488671000181}}]}, {
16.16552870419295, -840.7488671000181}, {
16.8586758847529, -842.8873571000111}}]}, {
Hue[0.37820393249936934`, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
@ -2998,7 +3002,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -828.903377100005}, {
14.77923434307306, -832.339687100017}, {
15.472381523633006`, -835.6323271000008}, {
16.16552870419295, -840.0816371000133}}]}}, {{
16.16552870419295, -840.0816371000133}, {
16.8586758847529, -842.4038671000176}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -3064,7 +3069,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -739.1511171000218}}, {{
14.77923434307306, -751.9313671000134}}, {{
15.472381523633006`, -764.0102371000239}}, {{
16.16552870419295, -775.6955871000173}}}]}, {
16.16552870419295, -775.6955871000173}}, {{
16.8586758847529, -786.8946071000096}}}]}, {
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -3106,7 +3112,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -830.3180271000201}}, {{
14.77923434307306, -833.441477100024}}, {{
15.472381523633006`, -836.4835171000209}}, {{
16.16552870419295, -840.7488671000181}}}]}, {
16.16552870419295, -840.7488671000181}}, {{
16.8586758847529, -842.8873571000111}}}]}, {
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -3149,7 +3156,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
14.086087162513117`, -828.903377100005}}, {{
14.77923434307306, -832.339687100017}}, {{
15.472381523633006`, -835.6323271000008}}, {{
16.16552870419295, -840.0816371000133}}}]}}, {{
16.16552870419295, -840.0816371000133}}, {{
16.8586758847529, -842.4038671000176}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -3375,6 +3383,7 @@ nyDsg/Fh7oHxS7aK/j5dZ+KAHp4AGg2gZQ==
83.5906, 23.976599999999998`}, {83.5906,
24.667199999999998`}, {83.5906, 25.3344}, {83.04379999999999,
25.8828}, {82.35159999999999, 25.8828}}}],
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1,
4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{
91.9609, 20.5672}, {88.86090000000002, 20.5672}, {
@ -3659,6 +3668,7 @@ pduSiPCFub8KFL7c4g7o8QMAD4nHQA==
Graphics[{
Thickness[0.004241961482989735],
Style[{
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
@ -4002,7 +4012,6 @@ DirXHgUz+Cg7wPLThathb/SlVR3Q8xcAkkWSrA==
199.17999999999998`, 14.0828}, {200.158,
14.940599999999998`}, {203.042, 15.9891}, {203.042,
12.532799999999998`}}}],
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
@ -4917,9 +4926,8 @@ W1zuAg==
3.8069267167983427`*^9, 3.806982334863874*^9, {3.807025329796467*^9,
3.807025349363695*^9}, 3.8070254958543167`*^9, {3.80702577696334*^9,
3.8070257955787163`*^9}, {3.8070299580663767`*^9, 3.8070300121590233`*^9},
3.807030970022821*^9},
CellLabel->
"Out[248]=",ExpressionUUID->"ab8716fa-cafa-4684-b78b-9a8a9fe52d08"]
3.807030970022821*^9, 3.8070685243355637`*^9},
CellLabel->"Out[18]=",ExpressionUUID->"f583a295-c46d-4387-b75a-4e476d82f999"]
}, Open ]],
Cell[CellGroupData[{
@ -5111,28 +5119,27 @@ E_\\\\text{PT2}$}\>\"", ",",
RowBox[{"Export", "[",
RowBox[{"\"\<fig1b.pdf\>\"", ",", "%"}], "]"}], ";"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdzmtIUwEABeDZSwnJtYxsE29bzTJTjGmJZLdlUc5y5ZQ0ZlsPZWVkzlwh
YUzaWjSxwMbQfISI5oN0iGiBhcFsNsnZyC3KOc3H5opSpqEU3XN/HD7On8Ph
XirMyFvDYDAEVOCfKtcq95RPmO1J5/Aom/yCHVAx742BY8sbj8KTeoL2GDlz
HAax20VQLXachZ7qc5dhGFdcBE1fyEoYQa6vguN7+g0wKq5jEL5jLA5BM+lk
7qJkts9tgbYu9XZo9DI5UMZn8OCS9WksnD64TQDXhY4kwM5qbRIkkvvS4Nhb
ZQ7kRQSch73ebjnU9VzIgyP/PErY7wsohnELukqoyF41wBmvvwaadlpf0L+2
NndAqbONVq1bieJjv3t0L5ysdQpgoEx6CM65wosGKLU3f9+G5tCSu9D6RnEP
xtcP34cNPyc0sMXQ9QgGl77Xw5QFw3CY2CdsV7FssMwu2eSX+oTJZhEbzoVo
eDAymBUN85t8sTB6P5EKfwQQp+GrxbXpsMpozITlo8VZUKsic2BGXpIcOoZu
XIVBMZ9UsDPNVAo1BQkaaMk3V0Cl3NEAj7gGe+hOWj/AWw8rPsK65xbahIl4
O5xvzfwKa0MKJuEdccovaGpUlCxRBjanquCG1r9qeMC5uZzuZbIHcGa6l7a8
OfIxtJ9peQKndtcZ4axknNbQyBqAn1Vu2uuil5ZlSn2Sm7ZPzx+B9UQ87euL
bs7hXGq38EQsfFZwRQAz2FOJ8FtuYriE0ua/RsA26cr3LMp9OROz8D9PTJ8c
1:eJwdzmlI0wEABfDZpYTkWka2icvVVmbKZLNkZGtZlLNceZCLmeuYrAzNmUsk
jI22DCcW2BiWR4jMPEiHiBpYGMy0Sc5GuijPnNtcUco0lKL/+394/HhfHi/y
akGaYgOFQuETgX+qp9Yjz/pEWZ5UBouwyc/bA5WL3hg4vrr1BDxjYJKeFLpO
wSB6mxhqJBMXoKfm4jUYFikphJYvwioYIdxcDScP9BthFLd9EL6jLA9Dq9BJ
3UdIbXPvgPZOzW5o8lIZMIdNYcEV29NYOH9kFw9uCh2Nhx01egFkJvamwPG3
KilkRQRcgj3eLjks776sgKP/PCrY7wsogtyl8iqozFo3QpfX/wxa9tpekr92
mtuhzNlKqilfi2Jjv2vsIJytdfJgYI7sKHRPhRcOEOpv/74LraHF96DtjfI+
5NePPIANP6d1sNnYWQGDS98bYNKScSRM4hO1qWl2WOZI3+aX+USJVjEdukN0
LMgJpkXD3CZfLIyOYybDHwHMc7BveWMqrDaZMqB2rCgT6tVCKUxTCORwYjj/
BgyK+aSGHSmWUqjLi9fBoVxrJVTJJxrg8anBbrILbR/gnUeVH2HdiyHS+Gm+
Ay62ZHyFtSF5s7BEkvQLWhqVxSuEgeZkNdzS8lcDDzu3a8lelvMQuuZ7SLVm
zmPoON/8BM7trzPBhfRJUmMjbQB+Vs+Q3hK/GlolNAhmSHsN7FFYz+STvr4y
wziWTewWnI6Fz/Ou82AafS4BfstOCE8ntPtvMmGrbO17JuEh6fQCrMgv4SoJ
5X2cOPgfgCumEw==
"],
CellLabel->
"In[307]:=",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
CellLabel->"In[51]:=",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "869.0300429041889`"}], "-",
RowBox[{"440.1832232589095`", " ", "x"}]}]], "Output",
RowBox[{"-", "864.7473490024253`"}], "-",
RowBox[{"383.0227883058552`", " ", "x"}]}]], "Output",
CellChangeTimes->{{3.806834537915291*^9, 3.806834563038266*^9},
3.806835634910845*^9, 3.80683572884858*^9, 3.806835774187798*^9,
3.806835853900483*^9, 3.806835911378214*^9, 3.806836247343996*^9,
@ -5141,14 +5148,13 @@ Cell[BoxData[
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
3.807031103497666*^9}},
CellLabel->
"Out[315]=",ExpressionUUID->"0c15534e-9e4d-44f5-9439-953cdf37d772"],
3.807031103497666*^9}, {3.807068525954463*^9, 3.807068553580873*^9}},
CellLabel->"Out[59]=",ExpressionUUID->"9fdcb03a-a907-4e3a-94c2-7e2d8203d86a"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "870.5994513307076`"}], "-",
RowBox[{"479.3752873145706`", " ", "x"}]}]], "Output",
RowBox[{"-", "865.8240143409203`"}], "-",
RowBox[{"414.3446586197217`", " ", "x"}]}]], "Output",
CellChangeTimes->{{3.806834537915291*^9, 3.806834563038266*^9},
3.806835634910845*^9, 3.80683572884858*^9, 3.806835774187798*^9,
3.806835853900483*^9, 3.806835911378214*^9, 3.806836247343996*^9,
@ -5157,9 +5163,8 @@ Cell[BoxData[
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
3.807031103499958*^9}},
CellLabel->
"Out[317]=",ExpressionUUID->"4cd233dc-33dc-4100-9b7f-4bdcb6cde3b0"],
3.807031103497666*^9}, {3.807068525954463*^9, 3.807068553582638*^9}},
CellLabel->"Out[61]=",ExpressionUUID->"32faa8e0-991f-4689-8390-9a2682b6d09d"],
Cell[BoxData[
TagBox[
@ -5176,7 +5181,8 @@ Cell[BoxData[
-824.0535071000181}, {-0.10184891999998058`, -827.0364871000027}, \
{-0.09116690999999832, -830.3180271000201}, {-0.08151011000001063, \
-833.441477100024}, {-0.07247327999999698, -836.4835171000209}, \
{-0.06505328000000077, -840.7488671000181}}]},
{-0.06505328000000077, -840.7488671000181}, {-0.05599275000000148, \
-842.8873571000111}}]},
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[
Large], LineBox[{{-0.3705474699999911, -750.4046271000107}, \
{-0.3212134599999956, -760.6578371000126}, {-0.27039005000000316`, \
@ -5187,7 +5193,8 @@ Cell[BoxData[
-821.7132771000024}, {-0.10003670999998349`, -825.2242771000056}, \
{-0.08975225999998315, -828.903377100005}, {-0.08040832000000364, \
-832.339687100017}, {-0.07162208999997688, -835.6323271000008}, \
{-0.06438604999999598, -840.0816371000133}}]}}, {
{-0.06438604999999598, -840.0816371000133}, {-0.055509260000008, \
-842.4038671000176}}]}}, {
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large],
GeometricTransformationBox[InsetBox[
FormBox[
@ -5239,7 +5246,8 @@ Cell[BoxData[
-824.0535071000181}}, {{-0.10184891999998058`, -827.0364871000027}}, \
{{-0.09116690999999832, -830.3180271000201}}, {{-0.08151011000001063, \
-833.441477100024}}, {{-0.07247327999999698, -836.4835171000209}}, \
{{-0.06505328000000077, -840.7488671000181}}}]},
{{-0.06505328000000077, -840.7488671000181}}, {{-0.05599275000000148, \
-842.8873571000111}}}]},
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[
Large], GeometricTransformationBox[InsetBox[
FormBox[
@ -5269,7 +5277,8 @@ Cell[BoxData[
-821.7132771000024}}, {{-0.10003670999998349`, -825.2242771000056}}, \
{{-0.08975225999998315, -828.903377100005}}, {{-0.08040832000000364, \
-832.339687100017}}, {{-0.07162208999997688, -835.6323271000008}}, \
{{-0.06438604999999598, -840.0816371000133}}}]}}, {
{{-0.06438604999999598, -840.0816371000133}}, {{-0.055509260000008, \
-842.4038671000176}}}]}}, {
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large]},
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[
Large]},
@ -5283,69 +5292,69 @@ Cell[BoxData[
TagBox[
{RGBColor[0, 0, 1], Thickness[Large], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVx3s0lAkYgHGJVrWrXKrRxjIh5QgpTqHMJknpMuzYJgxdmNVhZnZi2UxF
qe9CVw02t9BKqFxiJ+V93X2dIg3dbNKqlGKTajYxu9/+8Zzn/Kx2Svh7dHV0
dPzZ/n9/Zc/JrCwGhtJV+99HEjiu5E3NyGBgTKpuWywm0HR/eWz6WQa+bBo2
CWftuzZFeOIUA1/rW5V1sr6qXm6dQjLgGEv8WfYTgUkfztRKExiQ/xDkGbmX
QK4rv2/9dgYm5nzU9sYQuFvVYf+Jw4BhhlNySyyBZJ1e86G0dqg0KHNrPEKg
/KXIfcPMduCtzSjD0wTOs391Lo9ug2G7hN74fAKD95Z/XjilDcwOiFTCKwRG
dGe4vjzYCk7Z1wSrbxJotBKk98daoH3x7MKNtwmMrTVJD4xqAcXO8BLjXgJz
Q9OUs4eawXw3V9L7ikDxFG/leGgzePYMDtzREKi5/V0s90kT+M4y5zTqk+hV
aef5MKQJJB98p0lNSFxyJkb3hroROBsSCtdzSXyU/ej3J/xGKI0w07FyInFx
QZKvQ1sDwNjNmdZrSFzWIFDPWN0Af9tv7+r3J1Fn+jZP23qEmQ67BXk7SJRs
IookLgjFOXLqWBSJ62VMz/AuAIcH7xWyeBJHvSaCf9xYDysOxVmmHCPR0Jus
6XO7CcLud4l8JYk1mWEd/a43QDz6ONOqiMT85xX9qy3r4B8Fs2t+FYmmyf4V
nAXXQa5eNGLaQOI4f22gobkKZnQnLmM6SFz4bdWoyOAP4Hrftyl+QmLP8mh/
h2m1YK3Ie3j0DYnMuvOFgpFrcNEmetXJcRKdKMfb53qrwTfBWRAwnUKupUFV
cG8VqM/ucebMo1BQLkxPaKmEPqvcumm2FJqmalyMGyugJ85HX+NCoXfuyIXW
pqvwKu6FwXkehdFbwPqy6AokviTq9m2lMELf9dfW4HIYt8h28Aul8HlJfrNy
aSl8bq3avCGawrjRPDrUpgQG3Nwd/fZT+DYvQBNiWwxDASpGj6Rw0ONL0JyJ
Ivj5qbvJ6wwKPyW6rWj+VADPXZYu6LxAIVUa+ZV9az480Fh391VTqJ+cOXF6
TQ4MRhj7XGyi0GKMGqj3yIJnuZJf5F0U8nh7qoUD6RDs0xUk7qcwtUd84IX6
JDTWFGhCRyj0klxaCBUkrLsXtW3WBIWJw3yLM4ZJ4BviJnw9g0ajd+fmUloZ
uFbIuS0cGi/LC9+fqJGBR7Gu3lQzGjdqLnWcjZHB9zmnXnixTtGqjp7vk8IW
8srFG6xHza4OyxQSEIe/WVo9n0YMsLvcORkFWUa73AsX0BjSxnGkteEwKeMH
JlnSqOxYNKiMCYep4mcrgPXdHte8gr4wmB4qnTfJmmgvsdinEMFcv+OP461o
DNLlPu2aFIIj91aYlEvjh1jjsDTtNgi7x4sWWdMoPuJ0t6hvK0S2392cw7rG
JudQvGILRNeLnHpZp4jm8O5P+kHCJcWYwIZGrlq/8ZSWB6eTVQmbbWk06T/s
naRYA5nxvjtSWf9lNqH3dHIV5MU88LjF+mDa25TftM5QKvz477pFNGYfZ1Lf
TS6Biq1Hnh1mvVL3+jdlWiuo9TFpamBd/ibQvFNrBPUeBUX/si4YUu27c8y5
vnmZ81FPOxr/A3IRl0Y=
1:eJwVx3s0lHkYwHFNbKpVq9tSkchsUUns2C4YsRVjwrDaRFR0xbB6d1MklXrf
3yCWRiXXdCNyW6LyPBiX2VCZaDs2Roo9oUNZJKZ994/v+Z7P8n1iUQBHTU1N
yPb/lcVtCVeuyEGwKTVkRRaNE1K76SkpcojqDov3YL3gZD6VfEkOJRec755j
vd0+xutiohyWPJ/qe8O6UGG5IoaRQ3+gn++NbBqjR5LKQ8LlIEk33sHNodGQ
J+rctksOf04rNF15i0b/ihbTUR05ODbKek3zaWQeqMtOxzVCcyDHn1dJY1iv
7ybH2Y2wsU+Rs7+exm9N/0nNkDRAsLAC3Ftp9D6a/8loWgOselzcvbWLxgPP
U3i9UfXwWJ/f4N1Po/YGCGn/WAcjTHcJNU4jVT4/2eNIHbxVSk+4aTCYvidO
+s07GVRpKdVdtRk8NM1BOrFHBnoia6mbPoNjTcsow1e14B+4tp8yYZBfvNL6
L59aCPvFYrEPj0GTpGDOQ0UNaCY4u26zZ/DltZc3X4lq4PzZT44eLgyuyo7e
vqahGkh8pZO/N4Prqz0Vs2yq4aeYi8ZWhxlUm+lmza1CmCkar11NMSh2pnPE
Fgj2POqw8RkGt4XK2wb3AwQMxbTy4xkc5k96/yyoAq2a3C2+qQzOcWDKOq0e
QWRUTyz/NoNll/1alLyH0D6v8KpDKYOZb4qUNgYPoPRRwj1BNYMLzgiLdJZW
wkkbDZpqZnBCZO8xR68CZuXFbdz3kkGjJSXDvpr3YZmZyYhbL4NtlkHCNV+V
w1LGK9T/A4PyH7Oue77/AzIm0v8N/8LgOmLWlNpRCu92jrmLviZoaKBZ4t1R
AnqSHkqoQ9Az3ys5vK4YXrT1pAuMCS6IHbOYV1ME4aO/SQLNCTqkv79RX1sI
rzkGIldrgkEusKLA9x60cv9eZuVE8IAG70S9dz7kGqwu4nsSfHMnUyZdmwea
6xMchfsJ/jqcIdljfAd26NI3IsQEBzLcx3y4t8B7IKkj+CTBvs2fdy6czIHh
9hIdf5rgaITV97LRbAhKOagbkUyQ5B2cYVqfCSFis+UpWQQ1zlye/N02DTZZ
zJ5OFRDU/0h6qjZfgcGmE7epSoJ2dgGlXj3JwD2l8ghvIBjbdujUW0UCbNdY
VJehIMgX5xpBEQPmx+3mMl0EIwZF+klzoiGTE+1HDRDUHkpdRFShML7Pgzo3
TrAg7PqHi2WhkGYjE1ayFozltlwKDoUtiy25Q6xjVBXnszpDIO7Z/Be7PxEc
1i0cDI0UgxFf8YPFBEF0X1nwZOoIuOiJJrs/E/Rp0DGTqPbCrRcuZ22/EJS2
fNcnDd4LziWwm2L9tI2Xkd3pBx/izSzzWNONd/SPRfqC9da5bxepSXAnx7Dr
2ZQXtJa2bH3PeoSa5xencgNVonBWGkeCh86te5rT6Qo5QY9et7IuM047fTzS
BRwd1zzQnC7BGN+Fdu1TTpCsphV4jLWhQqMmUWUHJuKmZoG6BOcrzzpER9rC
E6fNN6NZv9adVO+a2ggU9+6pctZRcQMxV1XmgK8kZkYaErwWL48dmjKBgIrP
M3ax3sCp1LqrWg6zLx1VxrPO7/fQe6LShsKQjvsy1tnvKo41XzCv8nQWJE6w
/g+cO5iA
"]]},
Annotation[#, "Charting`Private`Tag$31369#1"]& ],
Annotation[#, "Charting`Private`Tag$7551#1"]& ],
TagBox[
{RGBColor[1, 0, 0], Thickness[Large], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVznlYzAkcx/GpLcdYJZKsaiklRbpMTxQN41FLD2WkbTucbTmaknaF6DD6
HdKhZsyiYyLCjA7KVNv3W2pqSEmmBz1GSGwqZRCZZnf2j8/zfl7/fRbs5AXu
0WcwGP66/d/eCmWWSKQAl5qpWfeXEzguYP8gFCrA8z3ZOplFoOlRSUJungLY
Fkw9js6+a/khmdkKCDjOPFinc1mX+0I+qYDYNdO4Eg8CUz6drY5NVMDNez+a
Z3oSaM0KVK3/VQFLeowLA70J3C1rd/xirgB7zeyypxwCyVqDpuSMVnhxx5+x
ZCuB8f0RK/2mtYL+x/r90bsJnOP47nwB3QLBmt0BIfEEhu6TfLPRa4HYFFZk
ZhqBkY+FrP4TclCnsoU3cwg08YTYbnUzePz759dZxQQmVM/K5e5tBunG152O
lQTmh2cIZgw0QbYZ0eLUSGCUHkcwHt4Ey38LHkp4ROBY288J1s/vwjqLncuu
viTQp8Le+0nYXUiXFv6TMUKgw9kY/bquRqBrmY+rGSQ+vfC05HlgI4xzpM/a
jElcLE7xXdrSAI5+SSZ280l0bQjqYq5qgDNWKejqTCJjaoC3XT1CWGw97bCa
RN5G4hLPDWHYa1F65CYS18cplEO7AAb4ivyMcBJHfTShwRvq4YqfsP9rDIlG
HLJK5fE3CFWikjknSKw6t729l1UH6g/K1AVnSCzsK+9dNb8WZhzzzuTlk2ia
6l9ublEDopOq6qsSEscD13KNLGXADb8VnFdHos28ytGIKXegs+L2YnkbiUr3
A/5LJ1WDLG3E7FUPiYp1RcVBw7dhV0eQ+5pBEp2pZW3ne26Bz+CoYquGROv5
UypDeyqB4MuPcqdRGCQJyU1sroBskTxMOI9C09NjbjMby2GSAyO02YFCTv7w
ZfndMpDSMY9KPCk8sAkWSiNuwpyoKYltfhRGGrKOyEMlMIg9K58HU9hXWtgk
cLoOqbnPnFyjKfxjtIAOty2FtL6Zqw4epnCwYMtYmN0VuGOY3LwnncK3Xt+3
zdZcAmmRedJFIYVfjnksb/oiBuOagc1YQiF1/ffJjvJCcPV/x11UTaFh6jlN
zuqLkF7+Uye7hUIrNfW63ksEvjmnotd3U8hm77kV8joX7g9Zumb3U3haGXX8
TVcWyJqHzeSfKfThXbOBchKexXyKlxrQeGwo0OqsUQrU5djq9ZjSaDJy3ozS
xgHTLevaRxsapfHFHzOr4iAyUmDEWkjjhrFr7XkxcdAounAwUWe+VnaqSBUL
RxilKxi2NI7OLRuKS+LBwIOGe9PtaMQt9tKOib1wL0o9YG9PY1iL+TJauwPI
/CDHiCU0CtoXvRXE7IA3naGZYp0fKlkFYtV2YBvuUr/RmWgttTqUFAHf9vFq
9y+lcZu+9YvOiRCI9iQ2HHGi8VPCzO0Z2gDweyzbl+dMY9RJ54eXVJvh8mTs
eKJzle3F5MNJm0BvpdzNwkX3N2I2u3viF5AVPfou1tm6y7AxW8uGxbz3dJkr
jbN60zgpSauBLx79oNb51VyNwYuJFfBSObbFw43GExmD/L+0LiDyMrCo1/nC
GcXpkQkH+MxjJuu50+ipXzP9hnYBBBTP6OPoLHnPtezQmoCk28yX0Fk8IDv0
IN2lfirT8sZ9nf8DpouaOg==
1:eJwVx3k41AkYwHFHFjlWUVghV9kkt05lMsUWT5LVrjBUrCVNnlLYKC31O9JF
I0vGVaIcU45V8r5Ng2ZJh0Y8CtUo22FdDxszY3/7x/f5Ph+LvdyASBUlJSU/
pv8/eFtyITdXDFFSD9XSYwTO8FiqOTliiBHu1ethbPBbZUL2ZTFwC8+YaicS
6OOVEXz+ohgSQ56tPsK4psvVOoMUA/li/wF2EoFpk1kNh5LEcEtES6TJBFq6
B/R7/yyGidLeMptUAvc3dtpNGYnhRGSCb1k6geS9eaKTmY9ATcBpF14i8PB7
zvoftB5BRUzk1AifQEO74Tw+3Qaugn2zPbcIDImt/Gql3AZ2QgP3vrsERr3I
cX9/ohU2s94sGWkjcMFaONQ90QItVPha424CExr0swNjWmBlRI+DipTAgrBM
nt5HEdRei30+O0pgtDKbNxMmghu1ggqdOQKnO8wTLF8/hPtO+g6O2iR63rb1
6Al9CHXr4zL1jElckXVQpalLCCZ6yRaay0nsze+9/jpACIUBxRELXUn8vjjN
x77tAVzipLx02Uyi84OgrvkbH0D0V//l+v4kKmnu9FjWjMBR9rRSDSWR60uU
cl0QhF1vArViSfSOF0u+7APYYsB3tk4kccxTFvLT9mZwM/9264+nSdRlk/X9
q++DZsMxF3Y2ifVXwjsH3ZtA3jTb4VVEYqFUMLhx6T0Iy3TO31NNosEpP4HR
krsw0J5umN5E4kyAV6CuaSOwc54ciBGTaGVyZ4yj8Scstn88Hf2SRIlrnJ/9
Nw2g4fR+VaKURPGWopKgkTqImhPk8cdJdKQcOvL6aqE8+OjbdCUKLZdq3Anp
uwPa1kGSZB0KgyqDs5NabsOrhmE5YUKhwdlpl4VCAbQ38p6X2VLILhi51vqw
Bvg+HmnpbhTG7QDrKk41DBbxIpO8KIxSc09uDakE1q9aU6n+FErLC0W8VTdB
d9a5KT+MwqNjfDrMphxmZxJWtcdS+Jm/azp0WRk8PiNIbkik8MOG2d2LZKWg
NcCX3TtN4dTx1W6iqWKIKS1f8SyLQurmL+p2rYXg5hp1TlFEodqpK7JLm66C
1N+k4+9qCs0mqHfNG3Khtu9T3VAThSxWZG3wu2wYdeRKvv5F4VlJdOpQ1wXw
ndQpMuuh0JNbYQUCEjLZ17YqD1F4/EuAWZZuGqzj/GMhG6dwwWjeYkoRD+rD
geXqSjRWHS4ZP18fD7Z75oZZjLdPV3RePhgPPp3ltscZZygaTxf1HwKqVlE2
ynjMuOZLfAoXdNJuXO9VphF32VY9kceA/neykpuqNIa2GTnQiggw9y0p2KFO
I69z+QfewQjwBL9+kvFTiTu/uD8cIpz/NRUxJh6Vmx1J4UCxkd/VNRo07lax
HHgmDwaboak8C00aJxMWhmcqdsLK1G25E/NpjE53fFra7w++Y5M99lo01ttc
PZmYsgPi9vONohlncBaxuuXboHrbZM4rxpZdasKLChY4GxbwWrRp1B/8nZ2W
sgkCKJ/uOcZvjWXzBuTr4LB8fNE6HRpPZH7O+EPhBHXvvC9XMc4/Jz47Kl8B
3UHjL4YZr1W5q3NLYQFT4nwDK10aKz8Fmj5RLABDD+/AUMbFHxuPPD7j1Lym
Ziwrh/F/NImciA==
"]]},
Annotation[#, "Charting`Private`Tag$31369#2"]& ]}, {}}}, InsetBox[
Annotation[#, "Charting`Private`Tag$7551#2"]& ]}, {}}}, InsetBox[
TemplateBox[{
GraphicsBox[{
Thickness[0.00970591089973794],
@ -5654,7 +5663,6 @@ iZHD1aO5Jg3FEQ4HQQoPmUPSaw00/DwtHGrXbUuq74X6L9HCoR+U3h8h+OeV
bv+suxQJ58tEpVjfZ49yEJ96hTNDCMEH57fFZnA+2H8hZpB8wBYFse+nKSSd
s0Q5/AWZN9HUYX0RMAOoRDncBAanUaupA3r+BwCGqbyr
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {
@ -5689,7 +5697,6 @@ OB/m3tJ986X09yL4ATvkWl87xsP5bwKBAtHxDhpvefcZ3DRwaDlwaqFrWbxD
wC3pmsRNuhD3TkLwTYyBoDveoXBN9+2MD4ZQ/8bA+Rvmvl9+7HMMXD3IO+v4
Y+H8/UDjt2nHOuyvlbVIv2IAca9bLNw9Lts+/71yIhYjvGF8AANGsZ0=
"]],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
@ -5905,6 +5912,7 @@ sFXE/3Z5B/T4BgDcLObh
115.84699999999998`, 11.8656}, {115.59199999999998`,
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
115.17299999999999`, 16.6484}}}],
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
@ -6429,7 +6437,6 @@ fuLhy9qphW4Oh9uWh59ahOCD/eNrDOc3shztNxQ3gfAN3SD2TjRxmAkCJ13h
/ASQvCeCD/bfBxcHA62VwhdYTODhAQ7uYCM4HyzfYuIAcoaRjwtcP9j9q5wd
1EDu5TJxmPKNLX6GjbODY9Oj4zN2GzvA0h84Hbkj+LD0CAA8iB4f
"]],
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}, {{1, 4, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData["
@ -7057,7 +7064,8 @@ j38AhtbtwA==
-824.0535071000181}, {-0.10184891999998058`, -827.0364871000027}, \
{-0.09116690999999832, -830.3180271000201}, {-0.08151011000001063, \
-833.441477100024}, {-0.07247327999999698, -836.4835171000209}, \
{-0.06505328000000077, -840.7488671000181}}]}, {
{-0.06505328000000077, -840.7488671000181}, {-0.05599275000000148, \
-842.8873571000111}}]}, {
Hue[0.1421359549995791, 0.6, 0.6],
Directive[
PointSize[0.012833333333333334`],
@ -7074,7 +7082,8 @@ j38AhtbtwA==
-821.7132771000024}, {-0.10003670999998349`, -825.2242771000056}, \
{-0.08975225999998315, -828.903377100005}, {-0.08040832000000364, \
-832.339687100017}, {-0.07162208999997688, -835.6323271000008}, \
{-0.06438604999999598, -840.0816371000133}}]}}, {{
{-0.06438604999999598, -840.0816371000133}, {-0.055509260000008, \
-842.4038671000176}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -7134,7 +7143,8 @@ j38AhtbtwA==
-824.0535071000181}}, {{-0.10184891999998058`, -827.0364871000027}}, \
{{-0.09116690999999832, -830.3180271000201}}, {{-0.08151011000001063, \
-833.441477100024}}, {{-0.07247327999999698, -836.4835171000209}}, \
{{-0.06505328000000077, -840.7488671000181}}}]}, {
{{-0.06505328000000077, -840.7488671000181}}, {{-0.05599275000000148, \
-842.8873571000111}}}]}, {
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -7173,7 +7183,8 @@ j38AhtbtwA==
-821.7132771000024}}, {{-0.10003670999998349`, -825.2242771000056}}, \
{{-0.08975225999998315, -828.903377100005}}, {{-0.08040832000000364, \
-832.339687100017}}, {{-0.07162208999997688, -835.6323271000008}}, \
{{-0.06438604999999598, -840.0816371000133}}}]}}, {{
{{-0.06438604999999598, -840.0816371000133}}, {{-0.055509260000008, \
-842.4038671000176}}}]}}, {{
Directive[
PointSize[0.012833333333333334`],
AbsoluteThickness[1.6],
@ -7213,35 +7224,35 @@ j38AhtbtwA==
Dashing[{Small, Small}],
RGBColor[0, 0, 1]],
Line[CompressedData["
1:eJwVx3s0lAkYgHGJVrWrXKrRxjIh5QgpTqHMJknpMuzYJgxdmNVhZnZi2UxF
qe9CVw02t9BKqFxiJ+V93X2dIg3dbNKqlGKTajYxu9/+8Zzn/Kx2Svh7dHV0
dPzZ/n9/Zc/JrCwGhtJV+99HEjiu5E3NyGBgTKpuWywm0HR/eWz6WQa+bBo2
CWftuzZFeOIUA1/rW5V1sr6qXm6dQjLgGEv8WfYTgUkfztRKExiQ/xDkGbmX
QK4rv2/9dgYm5nzU9sYQuFvVYf+Jw4BhhlNySyyBZJ1e86G0dqg0KHNrPEKg
/KXIfcPMduCtzSjD0wTOs391Lo9ug2G7hN74fAKD95Z/XjilDcwOiFTCKwRG
dGe4vjzYCk7Z1wSrbxJotBKk98daoH3x7MKNtwmMrTVJD4xqAcXO8BLjXgJz
Q9OUs4eawXw3V9L7ikDxFG/leGgzePYMDtzREKi5/V0s90kT+M4y5zTqk+hV
aef5MKQJJB98p0lNSFxyJkb3hroROBsSCtdzSXyU/ej3J/xGKI0w07FyInFx
QZKvQ1sDwNjNmdZrSFzWIFDPWN0Af9tv7+r3J1Fn+jZP23qEmQ67BXk7SJRs
IookLgjFOXLqWBSJ62VMz/AuAIcH7xWyeBJHvSaCf9xYDysOxVmmHCPR0Jus
6XO7CcLud4l8JYk1mWEd/a43QDz6ONOqiMT85xX9qy3r4B8Fs2t+FYmmyf4V
nAXXQa5eNGLaQOI4f22gobkKZnQnLmM6SFz4bdWoyOAP4Hrftyl+QmLP8mh/
h2m1YK3Ie3j0DYnMuvOFgpFrcNEmetXJcRKdKMfb53qrwTfBWRAwnUKupUFV
cG8VqM/ucebMo1BQLkxPaKmEPqvcumm2FJqmalyMGyugJ85HX+NCoXfuyIXW
pqvwKu6FwXkehdFbwPqy6AokviTq9m2lMELf9dfW4HIYt8h28Aul8HlJfrNy
aSl8bq3avCGawrjRPDrUpgQG3Nwd/fZT+DYvQBNiWwxDASpGj6Rw0ONL0JyJ
Ivj5qbvJ6wwKPyW6rWj+VADPXZYu6LxAIVUa+ZV9az480Fh391VTqJ+cOXF6
TQ4MRhj7XGyi0GKMGqj3yIJnuZJf5F0U8nh7qoUD6RDs0xUk7qcwtUd84IX6
JDTWFGhCRyj0klxaCBUkrLsXtW3WBIWJw3yLM4ZJ4BviJnw9g0ajd+fmUloZ
uFbIuS0cGi/LC9+fqJGBR7Gu3lQzGjdqLnWcjZHB9zmnXnixTtGqjp7vk8IW
8srFG6xHza4OyxQSEIe/WVo9n0YMsLvcORkFWUa73AsX0BjSxnGkteEwKeMH
JlnSqOxYNKiMCYep4mcrgPXdHte8gr4wmB4qnTfJmmgvsdinEMFcv+OP461o
DNLlPu2aFIIj91aYlEvjh1jjsDTtNgi7x4sWWdMoPuJ0t6hvK0S2392cw7rG
JudQvGILRNeLnHpZp4jm8O5P+kHCJcWYwIZGrlq/8ZSWB6eTVQmbbWk06T/s
naRYA5nxvjtSWf9lNqH3dHIV5MU88LjF+mDa25TftM5QKvz477pFNGYfZ1Lf
TS6Biq1Hnh1mvVL3+jdlWiuo9TFpamBd/ibQvFNrBPUeBUX/si4YUu27c8y5
vnmZ81FPOxr/A3IRl0Y=
"]]}, "Charting`Private`Tag$31369#1"],
1:eJwVx3s0lHkYwHFNbKpVq9tSkchsUUns2C4YsRVjwrDaRFR0xbB6d1MklXrf
3yCWRiXXdCNyW6LyPBiX2VCZaDs2Roo9oUNZJKZ994/v+Z7P8n1iUQBHTU1N
yPb/lcVtCVeuyEGwKTVkRRaNE1K76SkpcojqDov3YL3gZD6VfEkOJRec755j
vd0+xutiohyWPJ/qe8O6UGG5IoaRQ3+gn++NbBqjR5LKQ8LlIEk33sHNodGQ
J+rctksOf04rNF15i0b/ihbTUR05ODbKek3zaWQeqMtOxzVCcyDHn1dJY1iv
7ybH2Y2wsU+Rs7+exm9N/0nNkDRAsLAC3Ftp9D6a/8loWgOselzcvbWLxgPP
U3i9UfXwWJ/f4N1Po/YGCGn/WAcjTHcJNU4jVT4/2eNIHbxVSk+4aTCYvidO
+s07GVRpKdVdtRk8NM1BOrFHBnoia6mbPoNjTcsow1e14B+4tp8yYZBfvNL6
L59aCPvFYrEPj0GTpGDOQ0UNaCY4u26zZ/DltZc3X4lq4PzZT44eLgyuyo7e
vqahGkh8pZO/N4Prqz0Vs2yq4aeYi8ZWhxlUm+lmza1CmCkar11NMSh2pnPE
Fgj2POqw8RkGt4XK2wb3AwQMxbTy4xkc5k96/yyoAq2a3C2+qQzOcWDKOq0e
QWRUTyz/NoNll/1alLyH0D6v8KpDKYOZb4qUNgYPoPRRwj1BNYMLzgiLdJZW
wkkbDZpqZnBCZO8xR68CZuXFbdz3kkGjJSXDvpr3YZmZyYhbL4NtlkHCNV+V
w1LGK9T/A4PyH7Oue77/AzIm0v8N/8LgOmLWlNpRCu92jrmLviZoaKBZ4t1R
AnqSHkqoQ9Az3ys5vK4YXrT1pAuMCS6IHbOYV1ME4aO/SQLNCTqkv79RX1sI
rzkGIldrgkEusKLA9x60cv9eZuVE8IAG70S9dz7kGqwu4nsSfHMnUyZdmwea
6xMchfsJ/jqcIdljfAd26NI3IsQEBzLcx3y4t8B7IKkj+CTBvs2fdy6czIHh
9hIdf5rgaITV97LRbAhKOagbkUyQ5B2cYVqfCSFis+UpWQQ1zlye/N02DTZZ
zJ5OFRDU/0h6qjZfgcGmE7epSoJ2dgGlXj3JwD2l8ghvIBjbdujUW0UCbNdY
VJehIMgX5xpBEQPmx+3mMl0EIwZF+klzoiGTE+1HDRDUHkpdRFShML7Pgzo3
TrAg7PqHi2WhkGYjE1ayFozltlwKDoUtiy25Q6xjVBXnszpDIO7Z/Be7PxEc
1i0cDI0UgxFf8YPFBEF0X1nwZOoIuOiJJrs/E/Rp0DGTqPbCrRcuZ22/EJS2
fNcnDd4LziWwm2L9tI2Xkd3pBx/izSzzWNONd/SPRfqC9da5bxepSXAnx7Dr
2ZQXtJa2bH3PeoSa5xencgNVonBWGkeCh86te5rT6Qo5QY9et7IuM047fTzS
BRwd1zzQnC7BGN+Fdu1TTpCsphV4jLWhQqMmUWUHJuKmZoG6BOcrzzpER9rC
E6fNN6NZv9adVO+a2ggU9+6pctZRcQMxV1XmgK8kZkYaErwWL48dmjKBgIrP
M3ax3sCp1LqrWg6zLx1VxrPO7/fQe6LShsKQjvsy1tnvKo41XzCv8nQWJE6w
/g+cO5iA
"]]}, "Charting`Private`Tag$7551#1"],
Annotation[{
Directive[
Opacity[1.],
@ -7250,36 +7261,35 @@ vnmZ81FPOxr/A3IRl0Y=
Dashing[{Small, Small}],
RGBColor[1, 0, 0]],
Line[CompressedData["
1:eJwVznlYzAkcx/GpLcdYJZKsaiklRbpMTxQN41FLD2WkbTucbTmaknaF6DD6
HdKhZsyiYyLCjA7KVNv3W2pqSEmmBz1GSGwqZRCZZnf2j8/zfl7/fRbs5AXu
0WcwGP66/d/eCmWWSKQAl5qpWfeXEzguYP8gFCrA8z3ZOplFoOlRSUJungLY
Fkw9js6+a/khmdkKCDjOPFinc1mX+0I+qYDYNdO4Eg8CUz6drY5NVMDNez+a
Z3oSaM0KVK3/VQFLeowLA70J3C1rd/xirgB7zeyypxwCyVqDpuSMVnhxx5+x
ZCuB8f0RK/2mtYL+x/r90bsJnOP47nwB3QLBmt0BIfEEhu6TfLPRa4HYFFZk
ZhqBkY+FrP4TclCnsoU3cwg08YTYbnUzePz759dZxQQmVM/K5e5tBunG152O
lQTmh2cIZgw0QbYZ0eLUSGCUHkcwHt4Ey38LHkp4ROBY288J1s/vwjqLncuu
viTQp8Le+0nYXUiXFv6TMUKgw9kY/bquRqBrmY+rGSQ+vfC05HlgI4xzpM/a
jElcLE7xXdrSAI5+SSZ280l0bQjqYq5qgDNWKejqTCJjaoC3XT1CWGw97bCa
RN5G4hLPDWHYa1F65CYS18cplEO7AAb4ivyMcBJHfTShwRvq4YqfsP9rDIlG
HLJK5fE3CFWikjknSKw6t729l1UH6g/K1AVnSCzsK+9dNb8WZhzzzuTlk2ia
6l9ublEDopOq6qsSEscD13KNLGXADb8VnFdHos28ytGIKXegs+L2YnkbiUr3
A/5LJ1WDLG3E7FUPiYp1RcVBw7dhV0eQ+5pBEp2pZW3ne26Bz+CoYquGROv5
UypDeyqB4MuPcqdRGCQJyU1sroBskTxMOI9C09NjbjMby2GSAyO02YFCTv7w
ZfndMpDSMY9KPCk8sAkWSiNuwpyoKYltfhRGGrKOyEMlMIg9K58HU9hXWtgk
cLoOqbnPnFyjKfxjtIAOty2FtL6Zqw4epnCwYMtYmN0VuGOY3LwnncK3Xt+3
zdZcAmmRedJFIYVfjnksb/oiBuOagc1YQiF1/ffJjvJCcPV/x11UTaFh6jlN
zuqLkF7+Uye7hUIrNfW63ksEvjmnotd3U8hm77kV8joX7g9Zumb3U3haGXX8
TVcWyJqHzeSfKfThXbOBchKexXyKlxrQeGwo0OqsUQrU5djq9ZjSaDJy3ozS
xgHTLevaRxsapfHFHzOr4iAyUmDEWkjjhrFr7XkxcdAounAwUWe+VnaqSBUL
RxilKxi2NI7OLRuKS+LBwIOGe9PtaMQt9tKOib1wL0o9YG9PY1iL+TJauwPI
/CDHiCU0CtoXvRXE7IA3naGZYp0fKlkFYtV2YBvuUr/RmWgttTqUFAHf9vFq
9y+lcZu+9YvOiRCI9iQ2HHGi8VPCzO0Z2gDweyzbl+dMY9RJ54eXVJvh8mTs
eKJzle3F5MNJm0BvpdzNwkX3N2I2u3viF5AVPfou1tm6y7AxW8uGxbz3dJkr
jbN60zgpSauBLx79oNb51VyNwYuJFfBSObbFw43GExmD/L+0LiDyMrCo1/nC
GcXpkQkH+MxjJuu50+ipXzP9hnYBBBTP6OPoLHnPtezQmoCk28yX0Fk8IDv0
IN2lfirT8sZ9nf8DpouaOg==
"]]},
"Charting`Private`Tag$31369#2"]}}, {}}}, {
1:eJwVx3k41AkYwHFHFjlWUVghV9kkt05lMsUWT5LVrjBUrCVNnlLYKC31O9JF
I0vGVaIcU45V8r5Ng2ZJh0Y8CtUo22FdDxszY3/7x/f5Ph+LvdyASBUlJSU/
pv8/eFtyITdXDFFSD9XSYwTO8FiqOTliiBHu1ethbPBbZUL2ZTFwC8+YaicS
6OOVEXz+ohgSQ56tPsK4psvVOoMUA/li/wF2EoFpk1kNh5LEcEtES6TJBFq6
B/R7/yyGidLeMptUAvc3dtpNGYnhRGSCb1k6geS9eaKTmY9ATcBpF14i8PB7
zvoftB5BRUzk1AifQEO74Tw+3Qaugn2zPbcIDImt/Gql3AZ2QgP3vrsERr3I
cX9/ohU2s94sGWkjcMFaONQ90QItVPha424CExr0swNjWmBlRI+DipTAgrBM
nt5HEdRei30+O0pgtDKbNxMmghu1ggqdOQKnO8wTLF8/hPtO+g6O2iR63rb1
6Al9CHXr4zL1jElckXVQpalLCCZ6yRaay0nsze+9/jpACIUBxRELXUn8vjjN
x77tAVzipLx02Uyi84OgrvkbH0D0V//l+v4kKmnu9FjWjMBR9rRSDSWR60uU
cl0QhF1vArViSfSOF0u+7APYYsB3tk4kccxTFvLT9mZwM/9264+nSdRlk/X9
q++DZsMxF3Y2ifVXwjsH3ZtA3jTb4VVEYqFUMLhx6T0Iy3TO31NNosEpP4HR
krsw0J5umN5E4kyAV6CuaSOwc54ciBGTaGVyZ4yj8Scstn88Hf2SRIlrnJ/9
Nw2g4fR+VaKURPGWopKgkTqImhPk8cdJdKQcOvL6aqE8+OjbdCUKLZdq3Anp
uwPa1kGSZB0KgyqDs5NabsOrhmE5YUKhwdlpl4VCAbQ38p6X2VLILhi51vqw
Bvg+HmnpbhTG7QDrKk41DBbxIpO8KIxSc09uDakE1q9aU6n+FErLC0W8VTdB
d9a5KT+MwqNjfDrMphxmZxJWtcdS+Jm/azp0WRk8PiNIbkik8MOG2d2LZKWg
NcCX3TtN4dTx1W6iqWKIKS1f8SyLQurmL+p2rYXg5hp1TlFEodqpK7JLm66C
1N+k4+9qCs0mqHfNG3Khtu9T3VAThSxWZG3wu2wYdeRKvv5F4VlJdOpQ1wXw
ndQpMuuh0JNbYQUCEjLZ17YqD1F4/EuAWZZuGqzj/GMhG6dwwWjeYkoRD+rD
geXqSjRWHS4ZP18fD7Z75oZZjLdPV3RePhgPPp3ltscZZygaTxf1HwKqVlE2
ynjMuOZLfAoXdNJuXO9VphF32VY9kceA/neykpuqNIa2GTnQiggw9y0p2KFO
I69z+QfewQjwBL9+kvFTiTu/uD8cIpz/NRUxJh6Vmx1J4UCxkd/VNRo07lax
HHgmDwaboak8C00aJxMWhmcqdsLK1G25E/NpjE53fFra7w++Y5M99lo01ttc
PZmYsgPi9vONohlncBaxuuXboHrbZM4rxpZdasKLChY4GxbwWrRp1B/8nZ2W
sgkCKJ/uOcZvjWXzBuTr4LB8fNE6HRpPZH7O+EPhBHXvvC9XMc4/Jz47Kl8B
3UHjL4YZr1W5q3NLYQFT4nwDK10aKz8Fmj5RLABDD+/AUMbFHxuPPD7j1Lym
Ziwrh/F/NImciA==
"]]}, "Charting`Private`Tag$7551#2"]}}, {}}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
1, Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, -750.}, BaseStyle -> 18, DisplayFunction :> Identity,
@ -7361,6 +7371,7 @@ fuLhy9qphW4Oh9uWh59ahOCD/eNrDOc3shztNxQ3gfAN3SD2TjRxmAkCJ13h
/ASQvCeCD/bfBxcHA62VwhdYTODhAQ7uYCM4HyzfYuIAcoaRjwtcP9j9q5wd
1EDu5TJxmPKNLX6GjbODY9Oj4zN2GzvA0h84Hbkj+LD0CAA8iB4f
"]],
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
1, 0}}, {{1, 4, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData["
@ -7929,7 +7940,6 @@ Hs6HuZc/wnLLiW0I/pvAHXKt1nFwfstroEBonIPGW959BjcNHGSiUqzv58c5
BNySrkncpAtxbzeCD9bXEudQuKb7dsYHQ6h/o+F8H/NOx4S30XD1D4DeceeM
gfMjgMb7q8Y47K+VtUi/YgBxr30M3D13/Xun5x2KwQhvGB8A5gDHyQ==
"]],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
@ -8549,7 +8559,6 @@ sFXE/3Z5B/T4BgDcLObh
115.84699999999998`, 11.8656}, {115.59199999999998`,
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
115.17299999999999`, 16.6484}}}],
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
@ -8633,9 +8642,8 @@ W1zuAg==
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
3.807031103636958*^9}},
CellLabel->
"Out[318]=",ExpressionUUID->"b268d47c-69e8-47da-b75b-b3aaa93e8e01"]
3.807031103497666*^9}, {3.807068525954463*^9, 3.8070685536920357`*^9}},
CellLabel->"Out[62]=",ExpressionUUID->"d2306459-12c5-4228-8795-2793d765458a"]
}, Open ]],
Cell[CellGroupData[{
@ -8727,101 +8735,100 @@ Cell[BoxData[{
3.806983889882921*^9, 3.806983959011554*^9}, 3.8069846485140047`*^9, {
3.8070254146619987`*^9, 3.807025429120345*^9}, {3.807025472373068*^9,
3.807025483282565*^9}},
CellLabel->
"In[263]:=",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
CellLabel->"In[33]:=",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"2", ",",
RowBox[{"-", "878.1444207183421`"}]}], "}"}], ",",
RowBox[{"-", "856.1029124755935`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",",
RowBox[{"-", "869.0300429041889`"}]}], "}"}], ",",
RowBox[{"-", "864.7473490024253`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",",
RowBox[{"-", "865.4752302085313`"}]}], "}"}], ",",
RowBox[{"-", "864.9386144205257`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",",
RowBox[{"-", "863.3687649634255`"}]}], "}"}], ",",
RowBox[{"-", "864.0451125669871`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",",
RowBox[{"-", "861.172960434588`"}]}], "}"}], ",",
RowBox[{"-", "863.0157063831031`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",",
RowBox[{"-", "860.5027887161846`"}]}], "}"}], ",",
RowBox[{"-", "861.5227311500015`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",",
RowBox[{"-", "859.8925483575119`"}]}], "}"}], ",",
RowBox[{"-", "860.9416585428863`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",",
RowBox[{"-", "857.9799683872477`"}]}], "}"}], ",",
RowBox[{"-", "860.3736588464404`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",",
RowBox[{"-", "855.7853149580455`"}]}], "}"}]}], "}"}]], "Output",
RowBox[{"-", "858.7234963948817`"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9},
CellLabel->
"Out[265]=",ExpressionUUID->"565542ee-24a9-442e-98bc-cb9fd8c62d1d"],
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
3.807068527917289*^9},
CellLabel->"Out[35]=",ExpressionUUID->"a2ff2c7b-e309-41ac-8eba-5b03e0ab2000"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"2", ",",
RowBox[{"-", "879.6714536470544`"}]}], "}"}], ",",
RowBox[{"-", "856.9254755699974`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",",
RowBox[{"-", "870.5994513307076`"}]}], "}"}], ",",
RowBox[{"-", "865.8240143409203`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"4", ",",
RowBox[{"-", "867.2138919932354`"}]}], "}"}], ",",
RowBox[{"-", "866.2032328143968`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"5", ",",
RowBox[{"-", "865.331075922433`"}]}], "}"}], ",",
RowBox[{"-", "865.5093108251955`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"6", ",",
RowBox[{"-", "863.4213679410016`"}]}], "}"}], ",",
RowBox[{"-", "864.7061818319748`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"7", ",",
RowBox[{"-", "863.1253919887462`"}]}], "}"}], ",",
RowBox[{"-", "863.4871138598548`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"8", ",",
RowBox[{"-", "863.0112028879846`"}]}], "}"}], ",",
RowBox[{"-", "863.2503868076725`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"9", ",",
RowBox[{"-", "861.8339368972781`"}]}], "}"}], ",",
RowBox[{"-", "863.1357941834505`"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"10", ",",
RowBox[{"-", "860.7477009752849`"}]}], "}"}]}], "}"}]], "Output",
RowBox[{"-", "862.1594229142902`"}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
3.807029964796941*^9, 3.8070300333603163`*^9, 3.807030976098524*^9},
CellLabel->
"Out[266]=",ExpressionUUID->"2d3a38b4-3e7e-4a23-9be9-21e304c17305"],
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
3.807068527919983*^9},
CellLabel->"Out[36]=",ExpressionUUID->"e1687f36-1561-4673-ac8a-d6ef0c6decf3"],
Cell[BoxData[
GraphicsBox[{{}, {{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
LineBox[{{2., -878.1444207183421}, {3., -869.0300429041889}, {
4., -865.4752302085313}, {5., -863.3687649634255}, {
6., -861.172960434588}, {7., -860.5027887161846}, {
8., -859.8925483575119}, {9., -857.9799683872477}, {
10., -855.7853149580455}}]},
LineBox[{{2., -856.1029124755935}, {3., -864.7473490024253}, {
4., -864.9386144205257}, {5., -864.0451125669871}, {
6., -863.0157063831031}, {7., -861.5227311500015}, {
8., -860.9416585428863}, {9., -860.3736588464404}, {
10., -858.7234963948817}}]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6],
LineBox[{{2., -879.6714536470544}, {3., -870.5994513307076}, {
4., -867.2138919932354}, {5., -865.331075922433}, {
6., -863.4213679410016}, {7., -863.1253919887462}, {
8., -863.0112028879846}, {9., -861.8339368972781}, {
10., -860.7477009752849}}]}}, {
LineBox[{{2., -856.9254755699974}, {3., -865.8240143409203}, {
4., -866.2032328143968}, {5., -865.5093108251955}, {
6., -864.7061818319748}, {7., -863.4871138598548}, {
8., -863.2503868076725}, {9., -863.1357941834505}, {
10., -862.1594229142902}}]}}, {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.012833333333333334`], AbsoluteThickness[1.6]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
@ -8837,7 +8844,7 @@ Cell[BoxData[
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1.8333333333333337`, -854.4583072531007},
AxesOrigin->{1.8333333333333337`, -855.5417835678822},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
@ -8857,7 +8864,7 @@ Cell[BoxData[
Identity[
Part[#, 2]]}& )}},
PlotRange->{{1.8333333333333337`,
10.}, {-879.6714536470544, -855.7853149580455}},
10.}, {-866.2032328143968, -856.1029124755935}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
@ -8869,9 +8876,9 @@ Cell[BoxData[
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
3.807029964796941*^9, 3.8070300333603163`*^9, 3.807030976141529*^9},
CellLabel->
"Out[267]=",ExpressionUUID->"6229efb2-a30c-4747-852a-8745ccc94edb"]
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
3.807068527997254*^9},
CellLabel->"Out[37]=",ExpressionUUID->"4c0c864b-9acd-45d1-bfc8-570b261c904f"]
}, Open ]]
}, Open ]]
},
@ -8901,22 +8908,22 @@ Cell[1393, 43, 308, 6, 46, "Input",ExpressionUUID->"e654bc3b-6501-4977-90c8-b890
}, Closed]],
Cell[CellGroupData[{
Cell[1738, 54, 150, 3, 72, "Title",ExpressionUUID->"b01a9543-ed00-4d3e-bf93-f93e73170b6d"],
Cell[1891, 59, 685, 16, 52, "Input",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
Cell[1891, 59, 680, 15, 52, "Input",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
Cell[CellGroupData[{
Cell[2601, 79, 8462, 196, 801, "Input",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
Cell[11066, 277, 248653, 4644, 584, "Output",ExpressionUUID->"ab8716fa-cafa-4684-b78b-9a8a9fe52d08"]
Cell[2596, 78, 8457, 195, 801, "Input",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
Cell[11056, 275, 249288, 4654, 584, "Output",ExpressionUUID->"f583a295-c46d-4387-b75a-4e476d82f999"]
}, Open ]],
Cell[CellGroupData[{
Cell[259756, 4926, 7940, 203, 896, "Input",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
Cell[267699, 5131, 795, 14, 34, "Output",ExpressionUUID->"0c15534e-9e4d-44f5-9439-953cdf37d772"],
Cell[268497, 5147, 795, 14, 34, "Output",ExpressionUUID->"4cd233dc-33dc-4100-9b7f-4bdcb6cde3b0"],
Cell[269295, 5163, 189948, 3474, 555, "Output",ExpressionUUID->"b268d47c-69e8-47da-b75b-b3aaa93e8e01"]
Cell[260381, 4934, 7952, 202, 896, "Input",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
Cell[268336, 5138, 837, 13, 34, "Output",ExpressionUUID->"9fdcb03a-a907-4e3a-94c2-7e2d8203d86a"],
Cell[269176, 5153, 837, 13, 34, "Output",ExpressionUUID->"32faa8e0-991f-4689-8390-9a2682b6d09d"],
Cell[270016, 5168, 190268, 3477, 555, "Output",ExpressionUUID->"d2306459-12c5-4228-8795-2793d765458a"]
}, Open ]],
Cell[CellGroupData[{
Cell[459280, 8642, 3060, 88, 140, "Input",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
Cell[462343, 8732, 1321, 36, 34, "Output",ExpressionUUID->"565542ee-24a9-442e-98bc-cb9fd8c62d1d"],
Cell[463667, 8770, 1319, 36, 34, "Output",ExpressionUUID->"2d3a38b4-3e7e-4a23-9be9-21e304c17305"],
Cell[464989, 8808, 2980, 65, 230, "Output",ExpressionUUID->"6229efb2-a30c-4747-852a-8745ccc94edb"]
Cell[460321, 8650, 3056, 87, 140, "Input",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
Cell[463380, 8739, 1344, 36, 34, "Output",ExpressionUUID->"a2ff2c7b-e309-41ac-8eba-5b03e0ab2000"],
Cell[464727, 8777, 1344, 36, 34, "Output",ExpressionUUID->"e1687f36-1561-4673-ac8a-d6ef0c6decf3"],
Cell[466074, 8815, 3006, 65, 229, "Output",ExpressionUUID->"4c0c864b-9acd-45d1-bfc8-570b261c904f"]
}, Open ]]
}, Open ]]
}

View File

@ -78,21 +78,21 @@ The outcome of this work is nicely summarized in the abstract of Ref.~\onlinecit
\label{tab:energy}
}
\begin{ruledtabular}
\begin{tabular}{ldc}
\begin{tabular}{llc}
Method & \tabc{$E_c$} & Ref. \\
\hline
ASCI & -860.0(2) & \onlinecite{Eriksen_2020} \\
iCIPT2 & -861.1(5) & \onlinecite{Eriksen_2020} \\
CCSDTQ & -862.4 & \onlinecite{Eriksen_2020} \\
DMRG & -862.8(7) & \onlinecite{Eriksen_2020} \\
FCCR(2) & -863.0 & \onlinecite{Eriksen_2020} \\
CAD-FCIQMC & -863.4 & \onlinecite{Eriksen_2020} \\
AS-FCIQMC & -863.7(3) & \onlinecite{Eriksen_2020} \\
SHCI & -864.2(2) & \onlinecite{Eriksen_2020} \\
ASCI & $-860.0(2)$ & \onlinecite{Eriksen_2020} \\
iCIPT2 & $-861.1(5)$ & \onlinecite{Eriksen_2020} \\
CCSDTQ & $-862.4$ & \onlinecite{Eriksen_2020} \\
DMRG & $-862.8(7)$ & \onlinecite{Eriksen_2020} \\
FCCR(2) & $-863.0$ & \onlinecite{Eriksen_2020} \\
CAD-FCIQMC & $-863.4$ & \onlinecite{Eriksen_2020} \\
AS-FCIQMC & $-863.7(3)$ & \onlinecite{Eriksen_2020} \\
SHCI & $-864.2(2)$ & \onlinecite{Eriksen_2020} \\
\hline
ph-AFQMC & -864.3(4) & \onlinecite{Lee_2020} \\
ph-AFQMC & $-864.3(4)$ & \onlinecite{Lee_2020} \\
\hline
CIPSI & -8xx.x(x) & This work \\
CIPSI & \titou{$-86x.x(x)$} & This work \\
\end{tabular}
\end{ruledtabular}
\end{table}
@ -117,43 +117,48 @@ Being late to the party, we obviously cannot report blindly our CIPSI results.
However, following the philosophy of Eriksen \textit{et al.}, \cite{Eriksen_2020} we will report our results with the most neutral tone, leaving the freedom to the reader to make up his/her mind.
We then follow our usual ``protocol'' \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c} by performing a preliminary SCI calculation using Hartree-Fock orbitals in order to generate a SCI wave function with at least $10^7$ determinants.
Natural orbitals (NOs) are then computed based on this wave function, and a new, larger SCI calculation is performed with this new set of orbitals.
This has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit
This has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit.
The total SCI energy is defined as the sum of the variational energy $E_\text{var.}$ (computed via diagonalization of the CI matrix in the reference space) and a second-order perturbative correction $E_\text{PT2}$ which takes into account the external determinants, \ie, the determinants which do not belong to the variational space but are linked to the reference space via a nonzero matrix element. The magnitude of $E_\text{PT2}$ provides a qualitative idea of the ``distance'' to the FCI limit.
As mentioned above, SCI+PT2 methods rely heavily on extrapolation, especially when one deals with medium-sized systems.
We then linearly extrapolate the total SCI energy to $E_\text{PT2} = 0$ (which effectively corresponds to the FCI limit) using the two largest SCI wave functions.
Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.
Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by \titou{the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.}
We believe that it provides a very safe estimate of the extrapolation error.
%Note that all the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, as described in Ref.~\onlinecite{Applencourt_2018}.
The corresponding energies are reported in Table \ref{tab:NOvsLO} as functions of the number of determinants in the variational space $N_\text{det}$.
A second run has been performed with localized orbitals.
A Pipek-Mezey localization procedure \cite{Pipek_1989} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, and vi) the rest. \titou{More information needed here.}
As one can see from the results of Table \ref{tab:NOvsLO}, the variational energy as well as the PT2 corrected energy is much lower with localized orbitals for a same number of determinants.
Starting from the Hartree-Fock orbitals, a Pipek-Mezey localization procedure \cite{Pipek_1989} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, and vi) the higher virtual orbitals. \titou{More information needed here.}
As one can see from the energies of Table \ref{tab:NOvsLO}, for a given value of $N_\text{det}$, the variational energy as well as the PT2-corrected energies are much lower with localized orbitals than with NOs. We, therefore, consider these energies more trustworthy, and we will based our best estimate of the correlation energy of benzene on these calculations.
The convergence of the CIPSI correlation energy using localized orbitals is illustrated in Fig.~\ref{fig:CIPSI}, where one can see the behavior of $\Delta E_\text{var.}$, $\Delta E_\text{var.} + E_\text{PT2}$, and $\Delta E_\text{var.} + E_\text{rPT2}$ as a function of $N_\text{det}$ (left panel).
The right panel of Fig.~\ref{fig:CIPSI} shows $\Delta E_\text{var.} + E_\text{PT2}$ and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of $E_\text{PT2}$ or $E_\text{rPT2}$, and their corresponding \titou{two}-point linear extrapolation curves that we have used to get our final estimate of the correlation energy.
% Results and discussion
% Results
Our final numbers are gathered in Table \ref{tab:extrap_dist_table}, where, following the notations of Ref.~\onlinecite{Eriksen_2020}, we report, in addition to the final variational energies $\Delta E_{\text{var.}}$, the
extrapolation distances, $\Delta E_{\text{dist}}$, defined as the difference between the final computed energy, $\Delta E_{\text{final}}$, and the extrapolated energy, $\Delta E_{\text{extrap.}}$ associated with the ASCI, iCI, SHCI, CIPSI, and DMRG results.
The three flavours of SCI fall into an interval ranging from $-860.0$ m$E_h$ (ASCI) to $-864.2$ m$E_h$ (SHCI), while the other methods yield correlation energies ranging from $-863.7$ to $-862.8$ m$E_h$. Our final CIPSI number is \titou{$-86x.xx$} m$E_h$.
% Timings
The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer.
Each Irene's AMD node is a dual-socket AMD Rome (Epyc) CPU@2.60 GHz with 256GiB of RAM, with a total of 64 physical CPU cores.
These nodes are connected via Infiniband HDR100.
The three flavours of SCI fall into an interval ranging from $-863.7$ to $-862.8$ m$E_h$.
The CIPSI number is ?
%%$ FIG. 1 %%%
\begin{figure*}
\includegraphics[width=0.4\linewidth]{fig1a}
\hspace{0.08\linewidth}
\includegraphics[width=0.4\linewidth]{fig1b}
\caption{
Convergence of the CIPSI correlation energy for benzene using localized orbitals.
Convergence of the CIPSI correlation energy using localized orbitals.
Left: $\Delta E_\text{var.}$, $\Delta E_\text{var.} + E_\text{PT2}$, and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of the number of determinants in the variational space.
Right: $\Delta E_\text{var.} + E_\text{PT2}$ and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of $E_\text{PT2}$ or $E_\text{rPT2}$.
The two-point linear extrapolation curves (dashed lines) are also reported.
The \titou{two}-point linear extrapolation curves (dashed lines) are also reported.
The theoretical best estimate of $-863$ m$E_h$ from Ref.~\onlinecite{Eriksen_2020} is marked by a black line for comparison purposes.
\label{fig:CIPSI}
}
\end{figure*}
%%% TABLE II %%%
\begin{squeezetable}
%\begin{squeezetable}
\begin{table*}
\caption{Variational energy $E_\text{var.}$, second-order perturbative correction $E_\text{PT2}$ and its renormalized version $E_\text{rPT2}$ (in $E_h$) as a function of the number of determinants $N_\text{det}$ for the ground-state of the benzene molecule computed in the cc-pVDZ basis set.
The statistical error on $E_\text{PT2}$, corresponding to one standard deviation, are reported in parenthesis.}
@ -187,10 +192,11 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
2\,621\,440 & $-231.439\,324$ & $-231.553\,845(572)$ & $-231.551\,544(560)$ & $-231.473\,751$ & $-231.555\,261(403)$ & $-231.554\,159(397)$ \\
5\,242\,880 & $-231.450\,156$ & $-231.557\,541(534)$ & $-231.555\,558(524)$ & $-231.485\,829$ & $-231.558\,303(362)$ & $-231.557\,451(358)$ \\
10\,485\,760 & $-231.461\,927$ & $-231.559\,390(481)$ & $-231.557\,796(474)$ & $-231.497\,515$ & $-231.562\,568(322)$ & $-231.561\,901(319)$ \\
20\,971\,520 & $-231.474\,019$ & $-231.561\,315(430)$ & $-231.560\,063(424)$ & $-231.508\,714$ & $-231.564\,707(275)$ & $-231.564\,223(273)$ \\
\end{tabular}
\end{ruledtabular}
\end{table*}
\end{squeezetable}
%\end{squeezetable}
%%% %%% %%% %%%
%%% TABLE II %%%
@ -199,7 +205,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
The final variational energies $\Delta E_{\text{var.}}$ are also reported.
See Ref.~\onlinecite{Eriksen_2020} for more details.
All the energies are given in m$E_h$.
\label{extrap_dist_table}
\label{tab:extrap_dist_table}
}
\begin{ruledtabular}
\begin{tabular}{lcccc}
@ -208,7 +214,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
ASCI & $-737.1$ & $-835.4$ & $-860.0$ & $-24.6$ \\
iCI & $-730.0$ & $-833.7$ & $-861.1$ & $-27.4$ \\
SHCI & $-827.2$ & $-852.8$ & $-864.2$ & $-11.4$ \\
CIPSI & $-8xx.x$ & $-8xx.x$ & $-8xx.x$ & $-xx.x$ \\
CIPSI & \titou{$-8xx.x$} & \titou{$-8xx.x$} & \titou{$-86x.x$} & \titou{$-xx.x$} \\
DMRG & $-859.2$ & $-859.2$ & $-862.8$ & $-3.6$ \\
\end{tabular}
\end{ruledtabular}

View File