almost done with note
This commit is contained in:
parent
b883906b87
commit
7ddfc221d1
@ -21,3 +21,4 @@
|
||||
5892976 -231.43454648 -231.55441275 0.00059892 -231.55185712 0.00058615
|
||||
11786019 -231.44370625 -231.55550485 0.00055109 -231.55332245 0.00054034
|
||||
23572080 -231.45375768 -231.55855354 0.00051764 -231.55667052 0.00050834
|
||||
47144174 -231.46449337 -231.56037965 0.00046967 -231.55882970 0.00046208
|
||||
|
489
benzene.nb
489
benzene.nb
@ -10,10 +10,10 @@
|
||||
NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest
|
||||
NotebookDataPosition[ 158, 7]
|
||||
NotebookDataLength[ 469924, 8917]
|
||||
NotebookOptionsPosition[ 467997, 8877]
|
||||
NotebookOutlinePosition[ 468390, 8893]
|
||||
CellTagsIndexPosition[ 468347, 8890]
|
||||
NotebookDataLength[ 471035, 8924]
|
||||
NotebookOptionsPosition[ 469108, 8884]
|
||||
NotebookOutlinePosition[ 469501, 8900]
|
||||
CellTagsIndexPosition[ 469458, 8897]
|
||||
WindowFrame->Normal*)
|
||||
|
||||
(* Beginning of Notebook Content *)
|
||||
@ -39,7 +39,7 @@ mathpazo,xcolor,bm,mhchem,inputenc,fontenc,txfonts}\>\"", "}"}]}]}], "]"}],
|
||||
CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, {
|
||||
3.733131339213026*^9, 3.733131352923026*^9}, {3.797008990917596*^9,
|
||||
3.797008999040923*^9}},
|
||||
CellLabel->"In[1]:=",ExpressionUUID->"ac5d519b-06f4-49c4-86a7-701dc41bd48c"],
|
||||
CellLabel->"In[4]:=",ExpressionUUID->"ac5d519b-06f4-49c4-86a7-701dc41bd48c"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
@ -47,7 +47,7 @@ Cell[BoxData[
|
||||
InitializationCell->True,
|
||||
CellChangeTimes->{{3.7208031947801647`*^9, 3.7208032000677156`*^9}, {
|
||||
3.7208034541742477`*^9, 3.720803455246439*^9}},
|
||||
CellLabel->"In[3]:=",ExpressionUUID->"e654bc3b-6501-4977-90c8-b8904fd5ec90"]
|
||||
CellLabel->"In[6]:=",ExpressionUUID->"e654bc3b-6501-4977-90c8-b8904fd5ec90"]
|
||||
}, Closed]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
@ -72,8 +72,7 @@ Cell[BoxData[{
|
||||
3.807025314769651*^9}, {3.8070254940806017`*^9, 3.807025494241976*^9}, {
|
||||
3.80702577364151*^9, 3.807025793957727*^9}, {3.807029968143608*^9,
|
||||
3.807029969788039*^9}},
|
||||
CellLabel->
|
||||
"In[237]:=",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
|
||||
CellLabel->"In[7]:=",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
@ -272,8 +271,7 @@ Cell[BoxData[{
|
||||
3.806838361765071*^9, 3.806838364562574*^9}, 3.8068384074135437`*^9,
|
||||
3.806926716461219*^9, {3.807025344397726*^9, 3.807025348790187*^9}, {
|
||||
3.807029983522843*^9, 3.807030011586466*^9}},
|
||||
CellLabel->
|
||||
"In[239]:=",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
|
||||
CellLabel->"In[9]:=",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
|
||||
|
||||
Cell[BoxData[
|
||||
TagBox[
|
||||
@ -297,7 +295,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -739.1511171000218}, {
|
||||
14.77923434307306, -751.9313671000134}, {
|
||||
15.472381523633006`, -764.0102371000239}, {
|
||||
16.16552870419295, -775.6955871000173}}]},
|
||||
16.16552870419295, -775.6955871000173}, {
|
||||
16.8586758847529, -786.8946071000096}}]},
|
||||
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
LineBox[{{7.154615356913663, -797.7025771000115}, {
|
||||
7.847762537473608, -793.7577771000122}, {
|
||||
@ -312,7 +311,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -830.3180271000201}, {
|
||||
14.77923434307306, -833.441477100024}, {
|
||||
15.472381523633006`, -836.4835171000209}, {
|
||||
16.16552870419295, -840.7488671000181}}]},
|
||||
16.16552870419295, -840.7488671000181}, {
|
||||
16.8586758847529, -842.8873571000111}}]},
|
||||
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
LineBox[{{7.154615356913663, -750.4046271000107}, {
|
||||
7.847762537473608, -760.6578371000126}, {
|
||||
@ -327,7 +327,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -828.903377100005}, {
|
||||
14.77923434307306, -832.339687100017}, {
|
||||
15.472381523633006`, -835.6323271000008}, {
|
||||
16.16552870419295, -840.0816371000133}}]}}, {
|
||||
16.16552870419295, -840.0816371000133}, {
|
||||
16.8586758847529, -842.4038671000176}}]}}, {
|
||||
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
GeometricTransformationBox[InsetBox[
|
||||
FormBox[
|
||||
@ -364,7 +365,8 @@ Cell[BoxData[
|
||||
JoinedCurveBox[NCache[
|
||||
Line[{Offset[{0, 4}], Offset[{(-2) 3^Rational[1, 2], -2}],
|
||||
Offset[{2 3^Rational[1, 2], -2}], Offset[{0, 4}]}],
|
||||
Line[{Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
|
||||
Line[{
|
||||
Offset[{0, 4}], Offset[{-3.4641016151377544`, -2}],
|
||||
Offset[{3.4641016151377544`, -2}], Offset[{0, 4}]}]],
|
||||
CurveClosed->True]}}],
|
||||
StripOnInput->False,
|
||||
@ -388,7 +390,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -739.1511171000218}}, {{
|
||||
14.77923434307306, -751.9313671000134}}, {{
|
||||
15.472381523633006`, -764.0102371000239}}, {{
|
||||
16.16552870419295, -775.6955871000173}}}]},
|
||||
16.16552870419295, -775.6955871000173}}, {{
|
||||
16.8586758847529, -786.8946071000096}}}]},
|
||||
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
GeometricTransformationBox[InsetBox[
|
||||
FormBox[
|
||||
@ -422,7 +425,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -830.3180271000201}}, {{
|
||||
14.77923434307306, -833.441477100024}}, {{
|
||||
15.472381523633006`, -836.4835171000209}}, {{
|
||||
16.16552870419295, -840.7488671000181}}}]},
|
||||
16.16552870419295, -840.7488671000181}}, {{
|
||||
16.8586758847529, -842.8873571000111}}}]},
|
||||
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
GeometricTransformationBox[InsetBox[
|
||||
FormBox[
|
||||
@ -458,7 +462,8 @@ Cell[BoxData[
|
||||
14.086087162513117`, -828.903377100005}}, {{
|
||||
14.77923434307306, -832.339687100017}}, {{
|
||||
15.472381523633006`, -835.6323271000008}}, {{
|
||||
16.16552870419295, -840.0816371000133}}}]}}, {
|
||||
16.16552870419295, -840.0816371000133}}, {{
|
||||
16.8586758847529, -842.4038671000176}}}]}}, {
|
||||
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large]},
|
||||
{RGBColor[0,
|
||||
NCache[
|
||||
@ -1163,7 +1168,6 @@ sFXE/3Z5B/T4BgDcLObh
|
||||
115.84699999999998`, 11.8656}, {115.59199999999998`,
|
||||
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
|
||||
115.17299999999999`, 16.6484}}}],
|
||||
|
||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
||||
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
||||
@ -1896,7 +1900,6 @@ nNtwLdhhhwPQwRFqEPccCnaQXf7CQ+++GsT/i4IdNqg+aZ63VtVhw8OXUzd1
|
||||
BDuI9ni9YjFRdZDwCPgjkY7gc4L06yH4sPh7kaX9bXqtGpx/6rDT2sw6TTgf
|
||||
5l9Y+kDnw9IHAE5j9eo=
|
||||
"]],
|
||||
|
||||
FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||
3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1,
|
||||
3, 3}, {0, 1, 0}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {
|
||||
@ -2213,7 +2216,6 @@ ofpJ5eWskzwOpw47rc2cZw7ng+011YLz3xQDA9xb1UFmo9h8JgUuB7+LE2P+
|
||||
JavA7btwNeyNvjSCD3ansbKD/K4F+1L7pB3Q+TD1X/Z93JpuJgI1X8XBfc3R
|
||||
5QwzhBwMtFYKX0hRhfNh7oHxIeFg5iAL8ni8HkZ6gfEBk4bzQw==
|
||||
"]],
|
||||
|
||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1,
|
||||
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||
@ -2958,7 +2960,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -739.1511171000218}, {
|
||||
14.77923434307306, -751.9313671000134}, {
|
||||
15.472381523633006`, -764.0102371000239}, {
|
||||
16.16552870419295, -775.6955871000173}}]}, {
|
||||
16.16552870419295, -775.6955871000173}, {
|
||||
16.8586758847529, -786.8946071000096}}]}, {
|
||||
Hue[0.1421359549995791, 0.6, 0.6],
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
@ -2978,7 +2981,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -830.3180271000201}, {
|
||||
14.77923434307306, -833.441477100024}, {
|
||||
15.472381523633006`, -836.4835171000209}, {
|
||||
16.16552870419295, -840.7488671000181}}]}, {
|
||||
16.16552870419295, -840.7488671000181}, {
|
||||
16.8586758847529, -842.8873571000111}}]}, {
|
||||
Hue[0.37820393249936934`, 0.6, 0.6],
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
@ -2998,7 +3002,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -828.903377100005}, {
|
||||
14.77923434307306, -832.339687100017}, {
|
||||
15.472381523633006`, -835.6323271000008}, {
|
||||
16.16552870419295, -840.0816371000133}}]}}, {{
|
||||
16.16552870419295, -840.0816371000133}, {
|
||||
16.8586758847529, -842.4038671000176}}]}}, {{
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -3064,7 +3069,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -739.1511171000218}}, {{
|
||||
14.77923434307306, -751.9313671000134}}, {{
|
||||
15.472381523633006`, -764.0102371000239}}, {{
|
||||
16.16552870419295, -775.6955871000173}}}]}, {
|
||||
16.16552870419295, -775.6955871000173}}, {{
|
||||
16.8586758847529, -786.8946071000096}}}]}, {
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -3106,7 +3112,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -830.3180271000201}}, {{
|
||||
14.77923434307306, -833.441477100024}}, {{
|
||||
15.472381523633006`, -836.4835171000209}}, {{
|
||||
16.16552870419295, -840.7488671000181}}}]}, {
|
||||
16.16552870419295, -840.7488671000181}}, {{
|
||||
16.8586758847529, -842.8873571000111}}}]}, {
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -3149,7 +3156,8 @@ aPotByJer+eg0y5289ziHIfrQp8czx8zcAi3BAZAX44Dr//6Kakahg6xwOzC
|
||||
14.086087162513117`, -828.903377100005}}, {{
|
||||
14.77923434307306, -832.339687100017}}, {{
|
||||
15.472381523633006`, -835.6323271000008}}, {{
|
||||
16.16552870419295, -840.0816371000133}}}]}}, {{
|
||||
16.16552870419295, -840.0816371000133}}, {{
|
||||
16.8586758847529, -842.4038671000176}}}]}}, {{
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -3375,6 +3383,7 @@ nyDsg/Fh7oHxS7aK/j5dZ+KAHp4AGg2gZQ==
|
||||
83.5906, 23.976599999999998`}, {83.5906,
|
||||
24.667199999999998`}, {83.5906, 25.3344}, {83.04379999999999,
|
||||
25.8828}, {82.35159999999999, 25.8828}}}],
|
||||
|
||||
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1,
|
||||
4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{
|
||||
91.9609, 20.5672}, {88.86090000000002, 20.5672}, {
|
||||
@ -3659,6 +3668,7 @@ pduSiPCFub8KFL7c4g7o8QMAD4nHQA==
|
||||
Graphics[{
|
||||
Thickness[0.004241961482989735],
|
||||
Style[{
|
||||
|
||||
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
||||
0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0,
|
||||
1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {
|
||||
@ -4002,7 +4012,6 @@ DirXHgUz+Cg7wPLThathb/SlVR3Q8xcAkkWSrA==
|
||||
199.17999999999998`, 14.0828}, {200.158,
|
||||
14.940599999999998`}, {203.042, 15.9891}, {203.042,
|
||||
12.532799999999998`}}}],
|
||||
|
||||
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
||||
0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
|
||||
3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {
|
||||
@ -4917,9 +4926,8 @@ W1zuAg==
|
||||
3.8069267167983427`*^9, 3.806982334863874*^9, {3.807025329796467*^9,
|
||||
3.807025349363695*^9}, 3.8070254958543167`*^9, {3.80702577696334*^9,
|
||||
3.8070257955787163`*^9}, {3.8070299580663767`*^9, 3.8070300121590233`*^9},
|
||||
3.807030970022821*^9},
|
||||
CellLabel->
|
||||
"Out[248]=",ExpressionUUID->"ab8716fa-cafa-4684-b78b-9a8a9fe52d08"]
|
||||
3.807030970022821*^9, 3.8070685243355637`*^9},
|
||||
CellLabel->"Out[18]=",ExpressionUUID->"f583a295-c46d-4387-b75a-4e476d82f999"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
@ -5111,28 +5119,27 @@ E_\\\\text{PT2}$}\>\"", ",",
|
||||
RowBox[{"Export", "[",
|
||||
RowBox[{"\"\<fig1b.pdf\>\"", ",", "%"}], "]"}], ";"}]}], "Input",
|
||||
CellChangeTimes->CompressedData["
|
||||
1:eJwdzmtIUwEABeDZSwnJtYxsE29bzTJTjGmJZLdlUc5y5ZQ0ZlsPZWVkzlwh
|
||||
YUzaWjSxwMbQfISI5oN0iGiBhcFsNsnZyC3KOc3H5opSpqEU3XN/HD7On8Ph
|
||||
XirMyFvDYDAEVOCfKtcq95RPmO1J5/Aom/yCHVAx742BY8sbj8KTeoL2GDlz
|
||||
HAax20VQLXachZ7qc5dhGFdcBE1fyEoYQa6vguN7+g0wKq5jEL5jLA5BM+lk
|
||||
7qJkts9tgbYu9XZo9DI5UMZn8OCS9WksnD64TQDXhY4kwM5qbRIkkvvS4Nhb
|
||||
ZQ7kRQSch73ebjnU9VzIgyP/PErY7wsohnELukqoyF41wBmvvwaadlpf0L+2
|
||||
NndAqbONVq1bieJjv3t0L5ysdQpgoEx6CM65wosGKLU3f9+G5tCSu9D6RnEP
|
||||
xtcP34cNPyc0sMXQ9QgGl77Xw5QFw3CY2CdsV7FssMwu2eSX+oTJZhEbzoVo
|
||||
eDAymBUN85t8sTB6P5EKfwQQp+GrxbXpsMpozITlo8VZUKsic2BGXpIcOoZu
|
||||
XIVBMZ9UsDPNVAo1BQkaaMk3V0Cl3NEAj7gGe+hOWj/AWw8rPsK65xbahIl4
|
||||
O5xvzfwKa0MKJuEdccovaGpUlCxRBjanquCG1r9qeMC5uZzuZbIHcGa6l7a8
|
||||
OfIxtJ9peQKndtcZ4axknNbQyBqAn1Vu2uuil5ZlSn2Sm7ZPzx+B9UQ87euL
|
||||
bs7hXGq38EQsfFZwRQAz2FOJ8FtuYriE0ua/RsA26cr3LMp9OROz8D9PTJ8c
|
||||
|
||||
1:eJwdzmlI0wEABfDZpYTkWka2icvVVmbKZLNkZGtZlLNceZCLmeuYrAzNmUsk
|
||||
jI22DCcW2BiWR4jMPEiHiBpYGMy0Sc5GuijPnNtcUco0lKL/+394/HhfHi/y
|
||||
akGaYgOFQuETgX+qp9Yjz/pEWZ5UBouwyc/bA5WL3hg4vrr1BDxjYJKeFLpO
|
||||
wSB6mxhqJBMXoKfm4jUYFikphJYvwioYIdxcDScP9BthFLd9EL6jLA9Dq9BJ
|
||||
3UdIbXPvgPZOzW5o8lIZMIdNYcEV29NYOH9kFw9uCh2Nhx01egFkJvamwPG3
|
||||
KilkRQRcgj3eLjks776sgKP/PCrY7wsogtyl8iqozFo3QpfX/wxa9tpekr92
|
||||
mtuhzNlKqilfi2Jjv2vsIJytdfJgYI7sKHRPhRcOEOpv/74LraHF96DtjfI+
|
||||
5NePPIANP6d1sNnYWQGDS98bYNKScSRM4hO1qWl2WOZI3+aX+USJVjEdukN0
|
||||
LMgJpkXD3CZfLIyOYybDHwHMc7BveWMqrDaZMqB2rCgT6tVCKUxTCORwYjj/
|
||||
BgyK+aSGHSmWUqjLi9fBoVxrJVTJJxrg8anBbrILbR/gnUeVH2HdiyHS+Gm+
|
||||
Ay62ZHyFtSF5s7BEkvQLWhqVxSuEgeZkNdzS8lcDDzu3a8lelvMQuuZ7SLVm
|
||||
zmPoON/8BM7trzPBhfRJUmMjbQB+Vs+Q3hK/GlolNAhmSHsN7FFYz+STvr4y
|
||||
wziWTewWnI6Fz/Ou82AafS4BfstOCE8ntPtvMmGrbO17JuEh6fQCrMgv4SoJ
|
||||
5X2cOPgfgCumEw==
|
||||
"],
|
||||
CellLabel->
|
||||
"In[307]:=",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
|
||||
CellLabel->"In[51]:=",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{"-", "869.0300429041889`"}], "-",
|
||||
RowBox[{"440.1832232589095`", " ", "x"}]}]], "Output",
|
||||
RowBox[{"-", "864.7473490024253`"}], "-",
|
||||
RowBox[{"383.0227883058552`", " ", "x"}]}]], "Output",
|
||||
CellChangeTimes->{{3.806834537915291*^9, 3.806834563038266*^9},
|
||||
3.806835634910845*^9, 3.80683572884858*^9, 3.806835774187798*^9,
|
||||
3.806835853900483*^9, 3.806835911378214*^9, 3.806836247343996*^9,
|
||||
@ -5141,14 +5148,13 @@ Cell[BoxData[
|
||||
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
|
||||
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
|
||||
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
|
||||
3.807031103497666*^9}},
|
||||
CellLabel->
|
||||
"Out[315]=",ExpressionUUID->"0c15534e-9e4d-44f5-9439-953cdf37d772"],
|
||||
3.807031103497666*^9}, {3.807068525954463*^9, 3.807068553580873*^9}},
|
||||
CellLabel->"Out[59]=",ExpressionUUID->"9fdcb03a-a907-4e3a-94c2-7e2d8203d86a"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
RowBox[{"-", "870.5994513307076`"}], "-",
|
||||
RowBox[{"479.3752873145706`", " ", "x"}]}]], "Output",
|
||||
RowBox[{"-", "865.8240143409203`"}], "-",
|
||||
RowBox[{"414.3446586197217`", " ", "x"}]}]], "Output",
|
||||
CellChangeTimes->{{3.806834537915291*^9, 3.806834563038266*^9},
|
||||
3.806835634910845*^9, 3.80683572884858*^9, 3.806835774187798*^9,
|
||||
3.806835853900483*^9, 3.806835911378214*^9, 3.806836247343996*^9,
|
||||
@ -5157,9 +5163,8 @@ Cell[BoxData[
|
||||
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
|
||||
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
|
||||
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
|
||||
3.807031103499958*^9}},
|
||||
CellLabel->
|
||||
"Out[317]=",ExpressionUUID->"4cd233dc-33dc-4100-9b7f-4bdcb6cde3b0"],
|
||||
3.807031103497666*^9}, {3.807068525954463*^9, 3.807068553582638*^9}},
|
||||
CellLabel->"Out[61]=",ExpressionUUID->"32faa8e0-991f-4689-8390-9a2682b6d09d"],
|
||||
|
||||
Cell[BoxData[
|
||||
TagBox[
|
||||
@ -5176,7 +5181,8 @@ Cell[BoxData[
|
||||
-824.0535071000181}, {-0.10184891999998058`, -827.0364871000027}, \
|
||||
{-0.09116690999999832, -830.3180271000201}, {-0.08151011000001063, \
|
||||
-833.441477100024}, {-0.07247327999999698, -836.4835171000209}, \
|
||||
{-0.06505328000000077, -840.7488671000181}}]},
|
||||
{-0.06505328000000077, -840.7488671000181}, {-0.05599275000000148, \
|
||||
-842.8873571000111}}]},
|
||||
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[
|
||||
Large], LineBox[{{-0.3705474699999911, -750.4046271000107}, \
|
||||
{-0.3212134599999956, -760.6578371000126}, {-0.27039005000000316`, \
|
||||
@ -5187,7 +5193,8 @@ Cell[BoxData[
|
||||
-821.7132771000024}, {-0.10003670999998349`, -825.2242771000056}, \
|
||||
{-0.08975225999998315, -828.903377100005}, {-0.08040832000000364, \
|
||||
-832.339687100017}, {-0.07162208999997688, -835.6323271000008}, \
|
||||
{-0.06438604999999598, -840.0816371000133}}]}}, {
|
||||
{-0.06438604999999598, -840.0816371000133}, {-0.055509260000008, \
|
||||
-842.4038671000176}}]}}, {
|
||||
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large],
|
||||
GeometricTransformationBox[InsetBox[
|
||||
FormBox[
|
||||
@ -5239,7 +5246,8 @@ Cell[BoxData[
|
||||
-824.0535071000181}}, {{-0.10184891999998058`, -827.0364871000027}}, \
|
||||
{{-0.09116690999999832, -830.3180271000201}}, {{-0.08151011000001063, \
|
||||
-833.441477100024}}, {{-0.07247327999999698, -836.4835171000209}}, \
|
||||
{{-0.06505328000000077, -840.7488671000181}}}]},
|
||||
{{-0.06505328000000077, -840.7488671000181}}, {{-0.05599275000000148, \
|
||||
-842.8873571000111}}}]},
|
||||
{RGBColor[1, 0, 0], PointSize[0.012833333333333334`], Thickness[
|
||||
Large], GeometricTransformationBox[InsetBox[
|
||||
FormBox[
|
||||
@ -5269,7 +5277,8 @@ Cell[BoxData[
|
||||
-821.7132771000024}}, {{-0.10003670999998349`, -825.2242771000056}}, \
|
||||
{{-0.08975225999998315, -828.903377100005}}, {{-0.08040832000000364, \
|
||||
-832.339687100017}}, {{-0.07162208999997688, -835.6323271000008}}, \
|
||||
{{-0.06438604999999598, -840.0816371000133}}}]}}, {
|
||||
{{-0.06438604999999598, -840.0816371000133}}, {{-0.055509260000008, \
|
||||
-842.4038671000176}}}]}}, {
|
||||
{GrayLevel[0], PointSize[0.012833333333333334`], Thickness[Large]},
|
||||
{RGBColor[0, 0, 1], PointSize[0.012833333333333334`], Thickness[
|
||||
Large]},
|
||||
@ -5283,69 +5292,69 @@ Cell[BoxData[
|
||||
TagBox[
|
||||
{RGBColor[0, 0, 1], Thickness[Large], Opacity[1.],
|
||||
Dashing[{Small, Small}], LineBox[CompressedData["
|
||||
1:eJwVx3s0lAkYgHGJVrWrXKrRxjIh5QgpTqHMJknpMuzYJgxdmNVhZnZi2UxF
|
||||
qe9CVw02t9BKqFxiJ+V93X2dIg3dbNKqlGKTajYxu9/+8Zzn/Kx2Svh7dHV0
|
||||
dPzZ/n9/Zc/JrCwGhtJV+99HEjiu5E3NyGBgTKpuWywm0HR/eWz6WQa+bBo2
|
||||
CWftuzZFeOIUA1/rW5V1sr6qXm6dQjLgGEv8WfYTgUkfztRKExiQ/xDkGbmX
|
||||
QK4rv2/9dgYm5nzU9sYQuFvVYf+Jw4BhhlNySyyBZJ1e86G0dqg0KHNrPEKg
|
||||
/KXIfcPMduCtzSjD0wTOs391Lo9ug2G7hN74fAKD95Z/XjilDcwOiFTCKwRG
|
||||
dGe4vjzYCk7Z1wSrbxJotBKk98daoH3x7MKNtwmMrTVJD4xqAcXO8BLjXgJz
|
||||
Q9OUs4eawXw3V9L7ikDxFG/leGgzePYMDtzREKi5/V0s90kT+M4y5zTqk+hV
|
||||
aef5MKQJJB98p0lNSFxyJkb3hroROBsSCtdzSXyU/ej3J/xGKI0w07FyInFx
|
||||
QZKvQ1sDwNjNmdZrSFzWIFDPWN0Af9tv7+r3J1Fn+jZP23qEmQ67BXk7SJRs
|
||||
IookLgjFOXLqWBSJ62VMz/AuAIcH7xWyeBJHvSaCf9xYDysOxVmmHCPR0Jus
|
||||
6XO7CcLud4l8JYk1mWEd/a43QDz6ONOqiMT85xX9qy3r4B8Fs2t+FYmmyf4V
|
||||
nAXXQa5eNGLaQOI4f22gobkKZnQnLmM6SFz4bdWoyOAP4Hrftyl+QmLP8mh/
|
||||
h2m1YK3Ie3j0DYnMuvOFgpFrcNEmetXJcRKdKMfb53qrwTfBWRAwnUKupUFV
|
||||
cG8VqM/ucebMo1BQLkxPaKmEPqvcumm2FJqmalyMGyugJ85HX+NCoXfuyIXW
|
||||
pqvwKu6FwXkehdFbwPqy6AokviTq9m2lMELf9dfW4HIYt8h28Aul8HlJfrNy
|
||||
aSl8bq3avCGawrjRPDrUpgQG3Nwd/fZT+DYvQBNiWwxDASpGj6Rw0ONL0JyJ
|
||||
Ivj5qbvJ6wwKPyW6rWj+VADPXZYu6LxAIVUa+ZV9az480Fh391VTqJ+cOXF6
|
||||
TQ4MRhj7XGyi0GKMGqj3yIJnuZJf5F0U8nh7qoUD6RDs0xUk7qcwtUd84IX6
|
||||
JDTWFGhCRyj0klxaCBUkrLsXtW3WBIWJw3yLM4ZJ4BviJnw9g0ajd+fmUloZ
|
||||
uFbIuS0cGi/LC9+fqJGBR7Gu3lQzGjdqLnWcjZHB9zmnXnixTtGqjp7vk8IW
|
||||
8srFG6xHza4OyxQSEIe/WVo9n0YMsLvcORkFWUa73AsX0BjSxnGkteEwKeMH
|
||||
JlnSqOxYNKiMCYep4mcrgPXdHte8gr4wmB4qnTfJmmgvsdinEMFcv+OP461o
|
||||
DNLlPu2aFIIj91aYlEvjh1jjsDTtNgi7x4sWWdMoPuJ0t6hvK0S2392cw7rG
|
||||
JudQvGILRNeLnHpZp4jm8O5P+kHCJcWYwIZGrlq/8ZSWB6eTVQmbbWk06T/s
|
||||
naRYA5nxvjtSWf9lNqH3dHIV5MU88LjF+mDa25TftM5QKvz477pFNGYfZ1Lf
|
||||
TS6Biq1Hnh1mvVL3+jdlWiuo9TFpamBd/ibQvFNrBPUeBUX/si4YUu27c8y5
|
||||
vnmZ81FPOxr/A3IRl0Y=
|
||||
1:eJwVx3s0lHkYwHFNbKpVq9tSkchsUUns2C4YsRVjwrDaRFR0xbB6d1MklXrf
|
||||
3yCWRiXXdCNyW6LyPBiX2VCZaDs2Roo9oUNZJKZ994/v+Z7P8n1iUQBHTU1N
|
||||
yPb/lcVtCVeuyEGwKTVkRRaNE1K76SkpcojqDov3YL3gZD6VfEkOJRec755j
|
||||
vd0+xutiohyWPJ/qe8O6UGG5IoaRQ3+gn++NbBqjR5LKQ8LlIEk33sHNodGQ
|
||||
J+rctksOf04rNF15i0b/ihbTUR05ODbKek3zaWQeqMtOxzVCcyDHn1dJY1iv
|
||||
7ybH2Y2wsU+Rs7+exm9N/0nNkDRAsLAC3Ftp9D6a/8loWgOselzcvbWLxgPP
|
||||
U3i9UfXwWJ/f4N1Po/YGCGn/WAcjTHcJNU4jVT4/2eNIHbxVSk+4aTCYvidO
|
||||
+s07GVRpKdVdtRk8NM1BOrFHBnoia6mbPoNjTcsow1e14B+4tp8yYZBfvNL6
|
||||
L59aCPvFYrEPj0GTpGDOQ0UNaCY4u26zZ/DltZc3X4lq4PzZT44eLgyuyo7e
|
||||
vqahGkh8pZO/N4Prqz0Vs2yq4aeYi8ZWhxlUm+lmza1CmCkar11NMSh2pnPE
|
||||
Fgj2POqw8RkGt4XK2wb3AwQMxbTy4xkc5k96/yyoAq2a3C2+qQzOcWDKOq0e
|
||||
QWRUTyz/NoNll/1alLyH0D6v8KpDKYOZb4qUNgYPoPRRwj1BNYMLzgiLdJZW
|
||||
wkkbDZpqZnBCZO8xR68CZuXFbdz3kkGjJSXDvpr3YZmZyYhbL4NtlkHCNV+V
|
||||
w1LGK9T/A4PyH7Oue77/AzIm0v8N/8LgOmLWlNpRCu92jrmLviZoaKBZ4t1R
|
||||
AnqSHkqoQ9Az3ys5vK4YXrT1pAuMCS6IHbOYV1ME4aO/SQLNCTqkv79RX1sI
|
||||
rzkGIldrgkEusKLA9x60cv9eZuVE8IAG70S9dz7kGqwu4nsSfHMnUyZdmwea
|
||||
6xMchfsJ/jqcIdljfAd26NI3IsQEBzLcx3y4t8B7IKkj+CTBvs2fdy6czIHh
|
||||
9hIdf5rgaITV97LRbAhKOagbkUyQ5B2cYVqfCSFis+UpWQQ1zlye/N02DTZZ
|
||||
zJ5OFRDU/0h6qjZfgcGmE7epSoJ2dgGlXj3JwD2l8ghvIBjbdujUW0UCbNdY
|
||||
VJehIMgX5xpBEQPmx+3mMl0EIwZF+klzoiGTE+1HDRDUHkpdRFShML7Pgzo3
|
||||
TrAg7PqHi2WhkGYjE1ayFozltlwKDoUtiy25Q6xjVBXnszpDIO7Z/Be7PxEc
|
||||
1i0cDI0UgxFf8YPFBEF0X1nwZOoIuOiJJrs/E/Rp0DGTqPbCrRcuZ22/EJS2
|
||||
fNcnDd4LziWwm2L9tI2Xkd3pBx/izSzzWNONd/SPRfqC9da5bxepSXAnx7Dr
|
||||
2ZQXtJa2bH3PeoSa5xencgNVonBWGkeCh86te5rT6Qo5QY9et7IuM047fTzS
|
||||
BRwd1zzQnC7BGN+Fdu1TTpCsphV4jLWhQqMmUWUHJuKmZoG6BOcrzzpER9rC
|
||||
E6fNN6NZv9adVO+a2ggU9+6pctZRcQMxV1XmgK8kZkYaErwWL48dmjKBgIrP
|
||||
M3ax3sCp1LqrWg6zLx1VxrPO7/fQe6LShsKQjvsy1tnvKo41XzCv8nQWJE6w
|
||||
/g+cO5iA
|
||||
"]]},
|
||||
Annotation[#, "Charting`Private`Tag$31369#1"]& ],
|
||||
Annotation[#, "Charting`Private`Tag$7551#1"]& ],
|
||||
TagBox[
|
||||
{RGBColor[1, 0, 0], Thickness[Large], Opacity[1.],
|
||||
Dashing[{Small, Small}], LineBox[CompressedData["
|
||||
1:eJwVznlYzAkcx/GpLcdYJZKsaiklRbpMTxQN41FLD2WkbTucbTmaknaF6DD6
|
||||
HdKhZsyiYyLCjA7KVNv3W2pqSEmmBz1GSGwqZRCZZnf2j8/zfl7/fRbs5AXu
|
||||
0WcwGP66/d/eCmWWSKQAl5qpWfeXEzguYP8gFCrA8z3ZOplFoOlRSUJungLY
|
||||
Fkw9js6+a/khmdkKCDjOPFinc1mX+0I+qYDYNdO4Eg8CUz6drY5NVMDNez+a
|
||||
Z3oSaM0KVK3/VQFLeowLA70J3C1rd/xirgB7zeyypxwCyVqDpuSMVnhxx5+x
|
||||
ZCuB8f0RK/2mtYL+x/r90bsJnOP47nwB3QLBmt0BIfEEhu6TfLPRa4HYFFZk
|
||||
ZhqBkY+FrP4TclCnsoU3cwg08YTYbnUzePz759dZxQQmVM/K5e5tBunG152O
|
||||
lQTmh2cIZgw0QbYZ0eLUSGCUHkcwHt4Ey38LHkp4ROBY288J1s/vwjqLncuu
|
||||
viTQp8Le+0nYXUiXFv6TMUKgw9kY/bquRqBrmY+rGSQ+vfC05HlgI4xzpM/a
|
||||
jElcLE7xXdrSAI5+SSZ280l0bQjqYq5qgDNWKejqTCJjaoC3XT1CWGw97bCa
|
||||
RN5G4hLPDWHYa1F65CYS18cplEO7AAb4ivyMcBJHfTShwRvq4YqfsP9rDIlG
|
||||
HLJK5fE3CFWikjknSKw6t729l1UH6g/K1AVnSCzsK+9dNb8WZhzzzuTlk2ia
|
||||
6l9ublEDopOq6qsSEscD13KNLGXADb8VnFdHos28ytGIKXegs+L2YnkbiUr3
|
||||
A/5LJ1WDLG3E7FUPiYp1RcVBw7dhV0eQ+5pBEp2pZW3ne26Bz+CoYquGROv5
|
||||
UypDeyqB4MuPcqdRGCQJyU1sroBskTxMOI9C09NjbjMby2GSAyO02YFCTv7w
|
||||
ZfndMpDSMY9KPCk8sAkWSiNuwpyoKYltfhRGGrKOyEMlMIg9K58HU9hXWtgk
|
||||
cLoOqbnPnFyjKfxjtIAOty2FtL6Zqw4epnCwYMtYmN0VuGOY3LwnncK3Xt+3
|
||||
zdZcAmmRedJFIYVfjnksb/oiBuOagc1YQiF1/ffJjvJCcPV/x11UTaFh6jlN
|
||||
zuqLkF7+Uye7hUIrNfW63ksEvjmnotd3U8hm77kV8joX7g9Zumb3U3haGXX8
|
||||
TVcWyJqHzeSfKfThXbOBchKexXyKlxrQeGwo0OqsUQrU5djq9ZjSaDJy3ozS
|
||||
xgHTLevaRxsapfHFHzOr4iAyUmDEWkjjhrFr7XkxcdAounAwUWe+VnaqSBUL
|
||||
RxilKxi2NI7OLRuKS+LBwIOGe9PtaMQt9tKOib1wL0o9YG9PY1iL+TJauwPI
|
||||
/CDHiCU0CtoXvRXE7IA3naGZYp0fKlkFYtV2YBvuUr/RmWgttTqUFAHf9vFq
|
||||
9y+lcZu+9YvOiRCI9iQ2HHGi8VPCzO0Z2gDweyzbl+dMY9RJ54eXVJvh8mTs
|
||||
eKJzle3F5MNJm0BvpdzNwkX3N2I2u3viF5AVPfou1tm6y7AxW8uGxbz3dJkr
|
||||
jbN60zgpSauBLx79oNb51VyNwYuJFfBSObbFw43GExmD/L+0LiDyMrCo1/nC
|
||||
GcXpkQkH+MxjJuu50+ipXzP9hnYBBBTP6OPoLHnPtezQmoCk28yX0Fk8IDv0
|
||||
IN2lfirT8sZ9nf8DpouaOg==
|
||||
1:eJwVx3k41AkYwHFHFjlWUVghV9kkt05lMsUWT5LVrjBUrCVNnlLYKC31O9JF
|
||||
I0vGVaIcU45V8r5Ng2ZJh0Y8CtUo22FdDxszY3/7x/f5Ph+LvdyASBUlJSU/
|
||||
pv8/eFtyITdXDFFSD9XSYwTO8FiqOTliiBHu1ethbPBbZUL2ZTFwC8+YaicS
|
||||
6OOVEXz+ohgSQ56tPsK4psvVOoMUA/li/wF2EoFpk1kNh5LEcEtES6TJBFq6
|
||||
B/R7/yyGidLeMptUAvc3dtpNGYnhRGSCb1k6geS9eaKTmY9ATcBpF14i8PB7
|
||||
zvoftB5BRUzk1AifQEO74Tw+3Qaugn2zPbcIDImt/Gql3AZ2QgP3vrsERr3I
|
||||
cX9/ohU2s94sGWkjcMFaONQ90QItVPha424CExr0swNjWmBlRI+DipTAgrBM
|
||||
nt5HEdRei30+O0pgtDKbNxMmghu1ggqdOQKnO8wTLF8/hPtO+g6O2iR63rb1
|
||||
6Al9CHXr4zL1jElckXVQpalLCCZ6yRaay0nsze+9/jpACIUBxRELXUn8vjjN
|
||||
x77tAVzipLx02Uyi84OgrvkbH0D0V//l+v4kKmnu9FjWjMBR9rRSDSWR60uU
|
||||
cl0QhF1vArViSfSOF0u+7APYYsB3tk4kccxTFvLT9mZwM/9264+nSdRlk/X9
|
||||
q++DZsMxF3Y2ifVXwjsH3ZtA3jTb4VVEYqFUMLhx6T0Iy3TO31NNosEpP4HR
|
||||
krsw0J5umN5E4kyAV6CuaSOwc54ciBGTaGVyZ4yj8Scstn88Hf2SRIlrnJ/9
|
||||
Nw2g4fR+VaKURPGWopKgkTqImhPk8cdJdKQcOvL6aqE8+OjbdCUKLZdq3Anp
|
||||
uwPa1kGSZB0KgyqDs5NabsOrhmE5YUKhwdlpl4VCAbQ38p6X2VLILhi51vqw
|
||||
Bvg+HmnpbhTG7QDrKk41DBbxIpO8KIxSc09uDakE1q9aU6n+FErLC0W8VTdB
|
||||
d9a5KT+MwqNjfDrMphxmZxJWtcdS+Jm/azp0WRk8PiNIbkik8MOG2d2LZKWg
|
||||
NcCX3TtN4dTx1W6iqWKIKS1f8SyLQurmL+p2rYXg5hp1TlFEodqpK7JLm66C
|
||||
1N+k4+9qCs0mqHfNG3Khtu9T3VAThSxWZG3wu2wYdeRKvv5F4VlJdOpQ1wXw
|
||||
ndQpMuuh0JNbYQUCEjLZ17YqD1F4/EuAWZZuGqzj/GMhG6dwwWjeYkoRD+rD
|
||||
geXqSjRWHS4ZP18fD7Z75oZZjLdPV3RePhgPPp3ltscZZygaTxf1HwKqVlE2
|
||||
ynjMuOZLfAoXdNJuXO9VphF32VY9kceA/neykpuqNIa2GTnQiggw9y0p2KFO
|
||||
I69z+QfewQjwBL9+kvFTiTu/uD8cIpz/NRUxJh6Vmx1J4UCxkd/VNRo07lax
|
||||
HHgmDwaboak8C00aJxMWhmcqdsLK1G25E/NpjE53fFra7w++Y5M99lo01ttc
|
||||
PZmYsgPi9vONohlncBaxuuXboHrbZM4rxpZdasKLChY4GxbwWrRp1B/8nZ2W
|
||||
sgkCKJ/uOcZvjWXzBuTr4LB8fNE6HRpPZH7O+EPhBHXvvC9XMc4/Jz47Kl8B
|
||||
3UHjL4YZr1W5q3NLYQFT4nwDK10aKz8Fmj5RLABDD+/AUMbFHxuPPD7j1Lym
|
||||
Ziwrh/F/NImciA==
|
||||
"]]},
|
||||
Annotation[#, "Charting`Private`Tag$31369#2"]& ]}, {}}}, InsetBox[
|
||||
Annotation[#, "Charting`Private`Tag$7551#2"]& ]}, {}}}, InsetBox[
|
||||
TemplateBox[{
|
||||
GraphicsBox[{
|
||||
Thickness[0.00970591089973794],
|
||||
@ -5654,7 +5663,6 @@ iZHD1aO5Jg3FEQ4HQQoPmUPSaw00/DwtHGrXbUuq74X6L9HCoR+U3h8h+OeV
|
||||
bv+suxQJ58tEpVjfZ49yEJ96hTNDCMEH57fFZnA+2H8hZpB8wBYFse+nKSSd
|
||||
s0Q5/AWZN9HUYX0RMAOoRDncBAanUaupA3r+BwCGqbyr
|
||||
"]],
|
||||
|
||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3,
|
||||
3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0,
|
||||
1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {
|
||||
@ -5689,7 +5697,6 @@ OB/m3tJ986X09yL4ATvkWl87xsP5bwKBAtHxDhpvefcZ3DRwaDlwaqFrWbxD
|
||||
wC3pmsRNuhD3TkLwTYyBoDveoXBN9+2MD4ZQ/8bA+Rvmvl9+7HMMXD3IO+v4
|
||||
Y+H8/UDjt2nHOuyvlbVIv2IAca9bLNw9Lts+/71yIhYjvGF8AANGsZ0=
|
||||
"]],
|
||||
|
||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3,
|
||||
3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
@ -5905,6 +5912,7 @@ sFXE/3Z5B/T4BgDcLObh
|
||||
115.84699999999998`, 11.8656}, {115.59199999999998`,
|
||||
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
|
||||
115.17299999999999`, 16.6484}}}],
|
||||
|
||||
FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
||||
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
||||
@ -6429,7 +6437,6 @@ fuLhy9qphW4Oh9uWh59ahOCD/eNrDOc3shztNxQ3gfAN3SD2TjRxmAkCJ13h
|
||||
/ASQvCeCD/bfBxcHA62VwhdYTODhAQ7uYCM4HyzfYuIAcoaRjwtcP9j9q5wd
|
||||
1EDu5TJxmPKNLX6GjbODY9Oj4zN2GzvA0h84Hbkj+LD0CAA8iB4f
|
||||
"]],
|
||||
|
||||
FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
|
||||
1, 0}}, {{1, 4, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData["
|
||||
@ -7057,7 +7064,8 @@ j38AhtbtwA==
|
||||
-824.0535071000181}, {-0.10184891999998058`, -827.0364871000027}, \
|
||||
{-0.09116690999999832, -830.3180271000201}, {-0.08151011000001063, \
|
||||
-833.441477100024}, {-0.07247327999999698, -836.4835171000209}, \
|
||||
{-0.06505328000000077, -840.7488671000181}}]}, {
|
||||
{-0.06505328000000077, -840.7488671000181}, {-0.05599275000000148, \
|
||||
-842.8873571000111}}]}, {
|
||||
Hue[0.1421359549995791, 0.6, 0.6],
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
@ -7074,7 +7082,8 @@ j38AhtbtwA==
|
||||
-821.7132771000024}, {-0.10003670999998349`, -825.2242771000056}, \
|
||||
{-0.08975225999998315, -828.903377100005}, {-0.08040832000000364, \
|
||||
-832.339687100017}, {-0.07162208999997688, -835.6323271000008}, \
|
||||
{-0.06438604999999598, -840.0816371000133}}]}}, {{
|
||||
{-0.06438604999999598, -840.0816371000133}, {-0.055509260000008, \
|
||||
-842.4038671000176}}]}}, {{
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -7134,7 +7143,8 @@ j38AhtbtwA==
|
||||
-824.0535071000181}}, {{-0.10184891999998058`, -827.0364871000027}}, \
|
||||
{{-0.09116690999999832, -830.3180271000201}}, {{-0.08151011000001063, \
|
||||
-833.441477100024}}, {{-0.07247327999999698, -836.4835171000209}}, \
|
||||
{{-0.06505328000000077, -840.7488671000181}}}]}, {
|
||||
{{-0.06505328000000077, -840.7488671000181}}, {{-0.05599275000000148, \
|
||||
-842.8873571000111}}}]}, {
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -7173,7 +7183,8 @@ j38AhtbtwA==
|
||||
-821.7132771000024}}, {{-0.10003670999998349`, -825.2242771000056}}, \
|
||||
{{-0.08975225999998315, -828.903377100005}}, {{-0.08040832000000364, \
|
||||
-832.339687100017}}, {{-0.07162208999997688, -835.6323271000008}}, \
|
||||
{{-0.06438604999999598, -840.0816371000133}}}]}}, {{
|
||||
{{-0.06438604999999598, -840.0816371000133}}, {{-0.055509260000008, \
|
||||
-842.4038671000176}}}]}}, {{
|
||||
Directive[
|
||||
PointSize[0.012833333333333334`],
|
||||
AbsoluteThickness[1.6],
|
||||
@ -7213,35 +7224,35 @@ j38AhtbtwA==
|
||||
Dashing[{Small, Small}],
|
||||
RGBColor[0, 0, 1]],
|
||||
Line[CompressedData["
|
||||
1:eJwVx3s0lAkYgHGJVrWrXKrRxjIh5QgpTqHMJknpMuzYJgxdmNVhZnZi2UxF
|
||||
qe9CVw02t9BKqFxiJ+V93X2dIg3dbNKqlGKTajYxu9/+8Zzn/Kx2Svh7dHV0
|
||||
dPzZ/n9/Zc/JrCwGhtJV+99HEjiu5E3NyGBgTKpuWywm0HR/eWz6WQa+bBo2
|
||||
CWftuzZFeOIUA1/rW5V1sr6qXm6dQjLgGEv8WfYTgUkfztRKExiQ/xDkGbmX
|
||||
QK4rv2/9dgYm5nzU9sYQuFvVYf+Jw4BhhlNySyyBZJ1e86G0dqg0KHNrPEKg
|
||||
/KXIfcPMduCtzSjD0wTOs391Lo9ug2G7hN74fAKD95Z/XjilDcwOiFTCKwRG
|
||||
dGe4vjzYCk7Z1wSrbxJotBKk98daoH3x7MKNtwmMrTVJD4xqAcXO8BLjXgJz
|
||||
Q9OUs4eawXw3V9L7ikDxFG/leGgzePYMDtzREKi5/V0s90kT+M4y5zTqk+hV
|
||||
aef5MKQJJB98p0lNSFxyJkb3hroROBsSCtdzSXyU/ej3J/xGKI0w07FyInFx
|
||||
QZKvQ1sDwNjNmdZrSFzWIFDPWN0Af9tv7+r3J1Fn+jZP23qEmQ67BXk7SJRs
|
||||
IookLgjFOXLqWBSJ62VMz/AuAIcH7xWyeBJHvSaCf9xYDysOxVmmHCPR0Jus
|
||||
6XO7CcLud4l8JYk1mWEd/a43QDz6ONOqiMT85xX9qy3r4B8Fs2t+FYmmyf4V
|
||||
nAXXQa5eNGLaQOI4f22gobkKZnQnLmM6SFz4bdWoyOAP4Hrftyl+QmLP8mh/
|
||||
h2m1YK3Ie3j0DYnMuvOFgpFrcNEmetXJcRKdKMfb53qrwTfBWRAwnUKupUFV
|
||||
cG8VqM/ucebMo1BQLkxPaKmEPqvcumm2FJqmalyMGyugJ85HX+NCoXfuyIXW
|
||||
pqvwKu6FwXkehdFbwPqy6AokviTq9m2lMELf9dfW4HIYt8h28Aul8HlJfrNy
|
||||
aSl8bq3avCGawrjRPDrUpgQG3Nwd/fZT+DYvQBNiWwxDASpGj6Rw0ONL0JyJ
|
||||
Ivj5qbvJ6wwKPyW6rWj+VADPXZYu6LxAIVUa+ZV9az480Fh391VTqJ+cOXF6
|
||||
TQ4MRhj7XGyi0GKMGqj3yIJnuZJf5F0U8nh7qoUD6RDs0xUk7qcwtUd84IX6
|
||||
JDTWFGhCRyj0klxaCBUkrLsXtW3WBIWJw3yLM4ZJ4BviJnw9g0ajd+fmUloZ
|
||||
uFbIuS0cGi/LC9+fqJGBR7Gu3lQzGjdqLnWcjZHB9zmnXnixTtGqjp7vk8IW
|
||||
8srFG6xHza4OyxQSEIe/WVo9n0YMsLvcORkFWUa73AsX0BjSxnGkteEwKeMH
|
||||
JlnSqOxYNKiMCYep4mcrgPXdHte8gr4wmB4qnTfJmmgvsdinEMFcv+OP461o
|
||||
DNLlPu2aFIIj91aYlEvjh1jjsDTtNgi7x4sWWdMoPuJ0t6hvK0S2392cw7rG
|
||||
JudQvGILRNeLnHpZp4jm8O5P+kHCJcWYwIZGrlq/8ZSWB6eTVQmbbWk06T/s
|
||||
naRYA5nxvjtSWf9lNqH3dHIV5MU88LjF+mDa25TftM5QKvz477pFNGYfZ1Lf
|
||||
TS6Biq1Hnh1mvVL3+jdlWiuo9TFpamBd/ibQvFNrBPUeBUX/si4YUu27c8y5
|
||||
vnmZ81FPOxr/A3IRl0Y=
|
||||
"]]}, "Charting`Private`Tag$31369#1"],
|
||||
1:eJwVx3s0lHkYwHFNbKpVq9tSkchsUUns2C4YsRVjwrDaRFR0xbB6d1MklXrf
|
||||
3yCWRiXXdCNyW6LyPBiX2VCZaDs2Roo9oUNZJKZ994/v+Z7P8n1iUQBHTU1N
|
||||
yPb/lcVtCVeuyEGwKTVkRRaNE1K76SkpcojqDov3YL3gZD6VfEkOJRec755j
|
||||
vd0+xutiohyWPJ/qe8O6UGG5IoaRQ3+gn++NbBqjR5LKQ8LlIEk33sHNodGQ
|
||||
J+rctksOf04rNF15i0b/ihbTUR05ODbKek3zaWQeqMtOxzVCcyDHn1dJY1iv
|
||||
7ybH2Y2wsU+Rs7+exm9N/0nNkDRAsLAC3Ftp9D6a/8loWgOselzcvbWLxgPP
|
||||
U3i9UfXwWJ/f4N1Po/YGCGn/WAcjTHcJNU4jVT4/2eNIHbxVSk+4aTCYvidO
|
||||
+s07GVRpKdVdtRk8NM1BOrFHBnoia6mbPoNjTcsow1e14B+4tp8yYZBfvNL6
|
||||
L59aCPvFYrEPj0GTpGDOQ0UNaCY4u26zZ/DltZc3X4lq4PzZT44eLgyuyo7e
|
||||
vqahGkh8pZO/N4Prqz0Vs2yq4aeYi8ZWhxlUm+lmza1CmCkar11NMSh2pnPE
|
||||
Fgj2POqw8RkGt4XK2wb3AwQMxbTy4xkc5k96/yyoAq2a3C2+qQzOcWDKOq0e
|
||||
QWRUTyz/NoNll/1alLyH0D6v8KpDKYOZb4qUNgYPoPRRwj1BNYMLzgiLdJZW
|
||||
wkkbDZpqZnBCZO8xR68CZuXFbdz3kkGjJSXDvpr3YZmZyYhbL4NtlkHCNV+V
|
||||
w1LGK9T/A4PyH7Oue77/AzIm0v8N/8LgOmLWlNpRCu92jrmLviZoaKBZ4t1R
|
||||
AnqSHkqoQ9Az3ys5vK4YXrT1pAuMCS6IHbOYV1ME4aO/SQLNCTqkv79RX1sI
|
||||
rzkGIldrgkEusKLA9x60cv9eZuVE8IAG70S9dz7kGqwu4nsSfHMnUyZdmwea
|
||||
6xMchfsJ/jqcIdljfAd26NI3IsQEBzLcx3y4t8B7IKkj+CTBvs2fdy6czIHh
|
||||
9hIdf5rgaITV97LRbAhKOagbkUyQ5B2cYVqfCSFis+UpWQQ1zlye/N02DTZZ
|
||||
zJ5OFRDU/0h6qjZfgcGmE7epSoJ2dgGlXj3JwD2l8ghvIBjbdujUW0UCbNdY
|
||||
VJehIMgX5xpBEQPmx+3mMl0EIwZF+klzoiGTE+1HDRDUHkpdRFShML7Pgzo3
|
||||
TrAg7PqHi2WhkGYjE1ayFozltlwKDoUtiy25Q6xjVBXnszpDIO7Z/Be7PxEc
|
||||
1i0cDI0UgxFf8YPFBEF0X1nwZOoIuOiJJrs/E/Rp0DGTqPbCrRcuZ22/EJS2
|
||||
fNcnDd4LziWwm2L9tI2Xkd3pBx/izSzzWNONd/SPRfqC9da5bxepSXAnx7Dr
|
||||
2ZQXtJa2bH3PeoSa5xencgNVonBWGkeCh86te5rT6Qo5QY9et7IuM047fTzS
|
||||
BRwd1zzQnC7BGN+Fdu1TTpCsphV4jLWhQqMmUWUHJuKmZoG6BOcrzzpER9rC
|
||||
E6fNN6NZv9adVO+a2ggU9+6pctZRcQMxV1XmgK8kZkYaErwWL48dmjKBgIrP
|
||||
M3ax3sCp1LqrWg6zLx1VxrPO7/fQe6LShsKQjvsy1tnvKo41XzCv8nQWJE6w
|
||||
/g+cO5iA
|
||||
"]]}, "Charting`Private`Tag$7551#1"],
|
||||
Annotation[{
|
||||
Directive[
|
||||
Opacity[1.],
|
||||
@ -7250,36 +7261,35 @@ vnmZ81FPOxr/A3IRl0Y=
|
||||
Dashing[{Small, Small}],
|
||||
RGBColor[1, 0, 0]],
|
||||
Line[CompressedData["
|
||||
1:eJwVznlYzAkcx/GpLcdYJZKsaiklRbpMTxQN41FLD2WkbTucbTmaknaF6DD6
|
||||
HdKhZsyiYyLCjA7KVNv3W2pqSEmmBz1GSGwqZRCZZnf2j8/zfl7/fRbs5AXu
|
||||
0WcwGP66/d/eCmWWSKQAl5qpWfeXEzguYP8gFCrA8z3ZOplFoOlRSUJungLY
|
||||
Fkw9js6+a/khmdkKCDjOPFinc1mX+0I+qYDYNdO4Eg8CUz6drY5NVMDNez+a
|
||||
Z3oSaM0KVK3/VQFLeowLA70J3C1rd/xirgB7zeyypxwCyVqDpuSMVnhxx5+x
|
||||
ZCuB8f0RK/2mtYL+x/r90bsJnOP47nwB3QLBmt0BIfEEhu6TfLPRa4HYFFZk
|
||||
ZhqBkY+FrP4TclCnsoU3cwg08YTYbnUzePz759dZxQQmVM/K5e5tBunG152O
|
||||
lQTmh2cIZgw0QbYZ0eLUSGCUHkcwHt4Ey38LHkp4ROBY288J1s/vwjqLncuu
|
||||
viTQp8Le+0nYXUiXFv6TMUKgw9kY/bquRqBrmY+rGSQ+vfC05HlgI4xzpM/a
|
||||
jElcLE7xXdrSAI5+SSZ280l0bQjqYq5qgDNWKejqTCJjaoC3XT1CWGw97bCa
|
||||
RN5G4hLPDWHYa1F65CYS18cplEO7AAb4ivyMcBJHfTShwRvq4YqfsP9rDIlG
|
||||
HLJK5fE3CFWikjknSKw6t729l1UH6g/K1AVnSCzsK+9dNb8WZhzzzuTlk2ia
|
||||
6l9ublEDopOq6qsSEscD13KNLGXADb8VnFdHos28ytGIKXegs+L2YnkbiUr3
|
||||
A/5LJ1WDLG3E7FUPiYp1RcVBw7dhV0eQ+5pBEp2pZW3ne26Bz+CoYquGROv5
|
||||
UypDeyqB4MuPcqdRGCQJyU1sroBskTxMOI9C09NjbjMby2GSAyO02YFCTv7w
|
||||
ZfndMpDSMY9KPCk8sAkWSiNuwpyoKYltfhRGGrKOyEMlMIg9K58HU9hXWtgk
|
||||
cLoOqbnPnFyjKfxjtIAOty2FtL6Zqw4epnCwYMtYmN0VuGOY3LwnncK3Xt+3
|
||||
zdZcAmmRedJFIYVfjnksb/oiBuOagc1YQiF1/ffJjvJCcPV/x11UTaFh6jlN
|
||||
zuqLkF7+Uye7hUIrNfW63ksEvjmnotd3U8hm77kV8joX7g9Zumb3U3haGXX8
|
||||
TVcWyJqHzeSfKfThXbOBchKexXyKlxrQeGwo0OqsUQrU5djq9ZjSaDJy3ozS
|
||||
xgHTLevaRxsapfHFHzOr4iAyUmDEWkjjhrFr7XkxcdAounAwUWe+VnaqSBUL
|
||||
RxilKxi2NI7OLRuKS+LBwIOGe9PtaMQt9tKOib1wL0o9YG9PY1iL+TJauwPI
|
||||
/CDHiCU0CtoXvRXE7IA3naGZYp0fKlkFYtV2YBvuUr/RmWgttTqUFAHf9vFq
|
||||
9y+lcZu+9YvOiRCI9iQ2HHGi8VPCzO0Z2gDweyzbl+dMY9RJ54eXVJvh8mTs
|
||||
eKJzle3F5MNJm0BvpdzNwkX3N2I2u3viF5AVPfou1tm6y7AxW8uGxbz3dJkr
|
||||
jbN60zgpSauBLx79oNb51VyNwYuJFfBSObbFw43GExmD/L+0LiDyMrCo1/nC
|
||||
GcXpkQkH+MxjJuu50+ipXzP9hnYBBBTP6OPoLHnPtezQmoCk28yX0Fk8IDv0
|
||||
IN2lfirT8sZ9nf8DpouaOg==
|
||||
"]]},
|
||||
"Charting`Private`Tag$31369#2"]}}, {}}}, {
|
||||
1:eJwVx3k41AkYwHFHFjlWUVghV9kkt05lMsUWT5LVrjBUrCVNnlLYKC31O9JF
|
||||
I0vGVaIcU45V8r5Ng2ZJh0Y8CtUo22FdDxszY3/7x/f5Ph+LvdyASBUlJSU/
|
||||
pv8/eFtyITdXDFFSD9XSYwTO8FiqOTliiBHu1ethbPBbZUL2ZTFwC8+YaicS
|
||||
6OOVEXz+ohgSQ56tPsK4psvVOoMUA/li/wF2EoFpk1kNh5LEcEtES6TJBFq6
|
||||
B/R7/yyGidLeMptUAvc3dtpNGYnhRGSCb1k6geS9eaKTmY9ATcBpF14i8PB7
|
||||
zvoftB5BRUzk1AifQEO74Tw+3Qaugn2zPbcIDImt/Gql3AZ2QgP3vrsERr3I
|
||||
cX9/ohU2s94sGWkjcMFaONQ90QItVPha424CExr0swNjWmBlRI+DipTAgrBM
|
||||
nt5HEdRei30+O0pgtDKbNxMmghu1ggqdOQKnO8wTLF8/hPtO+g6O2iR63rb1
|
||||
6Al9CHXr4zL1jElckXVQpalLCCZ6yRaay0nsze+9/jpACIUBxRELXUn8vjjN
|
||||
x77tAVzipLx02Uyi84OgrvkbH0D0V//l+v4kKmnu9FjWjMBR9rRSDSWR60uU
|
||||
cl0QhF1vArViSfSOF0u+7APYYsB3tk4kccxTFvLT9mZwM/9264+nSdRlk/X9
|
||||
q++DZsMxF3Y2ifVXwjsH3ZtA3jTb4VVEYqFUMLhx6T0Iy3TO31NNosEpP4HR
|
||||
krsw0J5umN5E4kyAV6CuaSOwc54ciBGTaGVyZ4yj8Scstn88Hf2SRIlrnJ/9
|
||||
Nw2g4fR+VaKURPGWopKgkTqImhPk8cdJdKQcOvL6aqE8+OjbdCUKLZdq3Anp
|
||||
uwPa1kGSZB0KgyqDs5NabsOrhmE5YUKhwdlpl4VCAbQ38p6X2VLILhi51vqw
|
||||
Bvg+HmnpbhTG7QDrKk41DBbxIpO8KIxSc09uDakE1q9aU6n+FErLC0W8VTdB
|
||||
d9a5KT+MwqNjfDrMphxmZxJWtcdS+Jm/azp0WRk8PiNIbkik8MOG2d2LZKWg
|
||||
NcCX3TtN4dTx1W6iqWKIKS1f8SyLQurmL+p2rYXg5hp1TlFEodqpK7JLm66C
|
||||
1N+k4+9qCs0mqHfNG3Khtu9T3VAThSxWZG3wu2wYdeRKvv5F4VlJdOpQ1wXw
|
||||
ndQpMuuh0JNbYQUCEjLZ17YqD1F4/EuAWZZuGqzj/GMhG6dwwWjeYkoRD+rD
|
||||
geXqSjRWHS4ZP18fD7Z75oZZjLdPV3RePhgPPp3ltscZZygaTxf1HwKqVlE2
|
||||
ynjMuOZLfAoXdNJuXO9VphF32VY9kceA/neykpuqNIa2GTnQiggw9y0p2KFO
|
||||
I69z+QfewQjwBL9+kvFTiTu/uD8cIpz/NRUxJh6Vmx1J4UCxkd/VNRo07lax
|
||||
HHgmDwaboak8C00aJxMWhmcqdsLK1G25E/NpjE53fFra7w++Y5M99lo01ttc
|
||||
PZmYsgPi9vONohlncBaxuuXboHrbZM4rxpZdasKLChY4GxbwWrRp1B/8nZ2W
|
||||
sgkCKJ/uOcZvjWXzBuTr4LB8fNE6HRpPZH7O+EPhBHXvvC9XMc4/Jz47Kl8B
|
||||
3UHjL4YZr1W5q3NLYQFT4nwDK10aKz8Fmj5RLABDD+/AUMbFHxuPPD7j1Lym
|
||||
Ziwrh/F/NImciA==
|
||||
"]]}, "Charting`Private`Tag$7551#2"]}}, {}}}, {
|
||||
DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
|
||||
1, Axes -> {False, False}, AxesLabel -> {None, None},
|
||||
AxesOrigin -> {0, -750.}, BaseStyle -> 18, DisplayFunction :> Identity,
|
||||
@ -7361,6 +7371,7 @@ fuLhy9qphW4Oh9uWh59ahOCD/eNrDOc3shztNxQ3gfAN3SD2TjRxmAkCJ13h
|
||||
/ASQvCeCD/bfBxcHA62VwhdYTODhAQ7uYCM4HyzfYuIAcoaRjwtcP9j9q5wd
|
||||
1EDu5TJxmPKNLX6GjbODY9Oj4zN2GzvA0h84Hbkj+LD0CAA8iB4f
|
||||
"]],
|
||||
|
||||
FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3,
|
||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0,
|
||||
1, 0}}, {{1, 4, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData["
|
||||
@ -7929,7 +7940,6 @@ Hs6HuZc/wnLLiW0I/pvAHXKt1nFwfstroEBonIPGW959BjcNHGSiUqzv58c5
|
||||
BNySrkncpAtxbzeCD9bXEudQuKb7dsYHQ6h/o+F8H/NOx4S30XD1D4DeceeM
|
||||
gfMjgMb7q8Y47K+VtUi/YgBxr30M3D13/Xun5x2KwQhvGB8A5gDHyQ==
|
||||
"]],
|
||||
|
||||
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3,
|
||||
3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1,
|
||||
3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
@ -8549,7 +8559,6 @@ sFXE/3Z5B/T4BgDcLObh
|
||||
115.84699999999998`, 11.8656}, {115.59199999999998`,
|
||||
11.882799999999998`}, {115.17299999999999`, 11.9203}, {
|
||||
115.17299999999999`, 16.6484}}}],
|
||||
|
||||
FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1,
|
||||
0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1,
|
||||
0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1,
|
||||
@ -8633,9 +8642,8 @@ W1zuAg==
|
||||
3.806982558089999*^9, 3.806982599410475*^9}, {3.807025379984227*^9,
|
||||
3.807025403601342*^9}, 3.807025500693969*^9, 3.807029960130538*^9,
|
||||
3.807030028571109*^9, 3.8070309721705723`*^9, {3.80703108063879*^9,
|
||||
3.807031103636958*^9}},
|
||||
CellLabel->
|
||||
"Out[318]=",ExpressionUUID->"b268d47c-69e8-47da-b75b-b3aaa93e8e01"]
|
||||
3.807031103497666*^9}, {3.807068525954463*^9, 3.8070685536920357`*^9}},
|
||||
CellLabel->"Out[62]=",ExpressionUUID->"d2306459-12c5-4228-8795-2793d765458a"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
@ -8727,101 +8735,100 @@ Cell[BoxData[{
|
||||
3.806983889882921*^9, 3.806983959011554*^9}, 3.8069846485140047`*^9, {
|
||||
3.8070254146619987`*^9, 3.807025429120345*^9}, {3.807025472373068*^9,
|
||||
3.807025483282565*^9}},
|
||||
CellLabel->
|
||||
"In[263]:=",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
|
||||
CellLabel->"In[33]:=",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"2", ",",
|
||||
RowBox[{"-", "878.1444207183421`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "856.1029124755935`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"3", ",",
|
||||
RowBox[{"-", "869.0300429041889`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "864.7473490024253`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"4", ",",
|
||||
RowBox[{"-", "865.4752302085313`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "864.9386144205257`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"5", ",",
|
||||
RowBox[{"-", "863.3687649634255`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "864.0451125669871`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"6", ",",
|
||||
RowBox[{"-", "861.172960434588`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "863.0157063831031`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"7", ",",
|
||||
RowBox[{"-", "860.5027887161846`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "861.5227311500015`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"8", ",",
|
||||
RowBox[{"-", "859.8925483575119`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "860.9416585428863`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"9", ",",
|
||||
RowBox[{"-", "857.9799683872477`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "860.3736588464404`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"10", ",",
|
||||
RowBox[{"-", "855.7853149580455`"}]}], "}"}]}], "}"}]], "Output",
|
||||
RowBox[{"-", "858.7234963948817`"}]}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{
|
||||
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
|
||||
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
|
||||
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9},
|
||||
CellLabel->
|
||||
"Out[265]=",ExpressionUUID->"565542ee-24a9-442e-98bc-cb9fd8c62d1d"],
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
|
||||
3.807068527917289*^9},
|
||||
CellLabel->"Out[35]=",ExpressionUUID->"a2ff2c7b-e309-41ac-8eba-5b03e0ab2000"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
RowBox[{"{",
|
||||
RowBox[{"2", ",",
|
||||
RowBox[{"-", "879.6714536470544`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "856.9254755699974`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"3", ",",
|
||||
RowBox[{"-", "870.5994513307076`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "865.8240143409203`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"4", ",",
|
||||
RowBox[{"-", "867.2138919932354`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "866.2032328143968`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"5", ",",
|
||||
RowBox[{"-", "865.331075922433`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "865.5093108251955`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"6", ",",
|
||||
RowBox[{"-", "863.4213679410016`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "864.7061818319748`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"7", ",",
|
||||
RowBox[{"-", "863.1253919887462`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "863.4871138598548`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"8", ",",
|
||||
RowBox[{"-", "863.0112028879846`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "863.2503868076725`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"9", ",",
|
||||
RowBox[{"-", "861.8339368972781`"}]}], "}"}], ",",
|
||||
RowBox[{"-", "863.1357941834505`"}]}], "}"}], ",",
|
||||
RowBox[{"{",
|
||||
RowBox[{"10", ",",
|
||||
RowBox[{"-", "860.7477009752849`"}]}], "}"}]}], "}"}]], "Output",
|
||||
RowBox[{"-", "862.1594229142902`"}]}], "}"}]}], "}"}]], "Output",
|
||||
CellChangeTimes->{
|
||||
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
|
||||
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
|
||||
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.807030976098524*^9},
|
||||
CellLabel->
|
||||
"Out[266]=",ExpressionUUID->"2d3a38b4-3e7e-4a23-9be9-21e304c17305"],
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
|
||||
3.807068527919983*^9},
|
||||
CellLabel->"Out[36]=",ExpressionUUID->"e1687f36-1561-4673-ac8a-d6ef0c6decf3"],
|
||||
|
||||
Cell[BoxData[
|
||||
GraphicsBox[{{}, {{{}, {},
|
||||
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
|
||||
0.012833333333333334`], AbsoluteThickness[1.6],
|
||||
LineBox[{{2., -878.1444207183421}, {3., -869.0300429041889}, {
|
||||
4., -865.4752302085313}, {5., -863.3687649634255}, {
|
||||
6., -861.172960434588}, {7., -860.5027887161846}, {
|
||||
8., -859.8925483575119}, {9., -857.9799683872477}, {
|
||||
10., -855.7853149580455}}]},
|
||||
LineBox[{{2., -856.1029124755935}, {3., -864.7473490024253}, {
|
||||
4., -864.9386144205257}, {5., -864.0451125669871}, {
|
||||
6., -863.0157063831031}, {7., -861.5227311500015}, {
|
||||
8., -860.9416585428863}, {9., -860.3736588464404}, {
|
||||
10., -858.7234963948817}}]},
|
||||
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
|
||||
0.012833333333333334`], AbsoluteThickness[1.6],
|
||||
LineBox[{{2., -879.6714536470544}, {3., -870.5994513307076}, {
|
||||
4., -867.2138919932354}, {5., -865.331075922433}, {
|
||||
6., -863.4213679410016}, {7., -863.1253919887462}, {
|
||||
8., -863.0112028879846}, {9., -861.8339368972781}, {
|
||||
10., -860.7477009752849}}]}}, {
|
||||
LineBox[{{2., -856.9254755699974}, {3., -865.8240143409203}, {
|
||||
4., -866.2032328143968}, {5., -865.5093108251955}, {
|
||||
6., -864.7061818319748}, {7., -863.4871138598548}, {
|
||||
8., -863.2503868076725}, {9., -863.1357941834505}, {
|
||||
10., -862.1594229142902}}]}}, {
|
||||
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
|
||||
0.012833333333333334`], AbsoluteThickness[1.6]},
|
||||
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[
|
||||
@ -8837,7 +8844,7 @@ Cell[BoxData[
|
||||
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
|
||||
Axes->{True, True},
|
||||
AxesLabel->{None, None},
|
||||
AxesOrigin->{1.8333333333333337`, -854.4583072531007},
|
||||
AxesOrigin->{1.8333333333333337`, -855.5417835678822},
|
||||
DisplayFunction->Identity,
|
||||
Frame->{{False, False}, {False, False}},
|
||||
FrameLabel->{{None, None}, {None, None}},
|
||||
@ -8857,7 +8864,7 @@ Cell[BoxData[
|
||||
Identity[
|
||||
Part[#, 2]]}& )}},
|
||||
PlotRange->{{1.8333333333333337`,
|
||||
10.}, {-879.6714536470544, -855.7853149580455}},
|
||||
10.}, {-866.2032328143968, -856.1029124755935}},
|
||||
PlotRangeClipping->True,
|
||||
PlotRangePadding->{{
|
||||
Scaled[0.02],
|
||||
@ -8869,9 +8876,9 @@ Cell[BoxData[
|
||||
3.806982699052829*^9, {3.8069838912786694`*^9, 3.806983907196226*^9}, {
|
||||
3.806983953943466*^9, 3.806983959422969*^9}, {3.807025422863805*^9,
|
||||
3.807025429573679*^9}, {3.807025475448987*^9, 3.80702550685283*^9},
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.807030976141529*^9},
|
||||
CellLabel->
|
||||
"Out[267]=",ExpressionUUID->"6229efb2-a30c-4747-852a-8745ccc94edb"]
|
||||
3.807029964796941*^9, 3.8070300333603163`*^9, 3.8070309760956917`*^9,
|
||||
3.807068527997254*^9},
|
||||
CellLabel->"Out[37]=",ExpressionUUID->"4c0c864b-9acd-45d1-bfc8-570b261c904f"]
|
||||
}, Open ]]
|
||||
}, Open ]]
|
||||
},
|
||||
@ -8901,22 +8908,22 @@ Cell[1393, 43, 308, 6, 46, "Input",ExpressionUUID->"e654bc3b-6501-4977-90c8-b890
|
||||
}, Closed]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[1738, 54, 150, 3, 72, "Title",ExpressionUUID->"b01a9543-ed00-4d3e-bf93-f93e73170b6d"],
|
||||
Cell[1891, 59, 685, 16, 52, "Input",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
|
||||
Cell[1891, 59, 680, 15, 52, "Input",ExpressionUUID->"88b83480-ff85-479c-9bd5-86e50cd48da6"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[2601, 79, 8462, 196, 801, "Input",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
|
||||
Cell[11066, 277, 248653, 4644, 584, "Output",ExpressionUUID->"ab8716fa-cafa-4684-b78b-9a8a9fe52d08"]
|
||||
Cell[2596, 78, 8457, 195, 801, "Input",ExpressionUUID->"f0f1eea9-20b9-48df-9572-c510784075b4"],
|
||||
Cell[11056, 275, 249288, 4654, 584, "Output",ExpressionUUID->"f583a295-c46d-4387-b75a-4e476d82f999"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[259756, 4926, 7940, 203, 896, "Input",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
|
||||
Cell[267699, 5131, 795, 14, 34, "Output",ExpressionUUID->"0c15534e-9e4d-44f5-9439-953cdf37d772"],
|
||||
Cell[268497, 5147, 795, 14, 34, "Output",ExpressionUUID->"4cd233dc-33dc-4100-9b7f-4bdcb6cde3b0"],
|
||||
Cell[269295, 5163, 189948, 3474, 555, "Output",ExpressionUUID->"b268d47c-69e8-47da-b75b-b3aaa93e8e01"]
|
||||
Cell[260381, 4934, 7952, 202, 896, "Input",ExpressionUUID->"0daea3d8-8f63-4ebd-ba0f-4b294d15916e"],
|
||||
Cell[268336, 5138, 837, 13, 34, "Output",ExpressionUUID->"9fdcb03a-a907-4e3a-94c2-7e2d8203d86a"],
|
||||
Cell[269176, 5153, 837, 13, 34, "Output",ExpressionUUID->"32faa8e0-991f-4689-8390-9a2682b6d09d"],
|
||||
Cell[270016, 5168, 190268, 3477, 555, "Output",ExpressionUUID->"d2306459-12c5-4228-8795-2793d765458a"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[459280, 8642, 3060, 88, 140, "Input",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
|
||||
Cell[462343, 8732, 1321, 36, 34, "Output",ExpressionUUID->"565542ee-24a9-442e-98bc-cb9fd8c62d1d"],
|
||||
Cell[463667, 8770, 1319, 36, 34, "Output",ExpressionUUID->"2d3a38b4-3e7e-4a23-9be9-21e304c17305"],
|
||||
Cell[464989, 8808, 2980, 65, 230, "Output",ExpressionUUID->"6229efb2-a30c-4747-852a-8745ccc94edb"]
|
||||
Cell[460321, 8650, 3056, 87, 140, "Input",ExpressionUUID->"421fb6d3-9953-44a8-b64c-0ae5b3f17148"],
|
||||
Cell[463380, 8739, 1344, 36, 34, "Output",ExpressionUUID->"a2ff2c7b-e309-41ac-8eba-5b03e0ab2000"],
|
||||
Cell[464727, 8777, 1344, 36, 34, "Output",ExpressionUUID->"e1687f36-1561-4673-ac8a-d6ef0c6decf3"],
|
||||
Cell[466074, 8815, 3006, 65, 229, "Output",ExpressionUUID->"4c0c864b-9acd-45d1-bfc8-570b261c904f"]
|
||||
}, Open ]]
|
||||
}, Open ]]
|
||||
}
|
||||
|
56
benzene.tex
56
benzene.tex
@ -78,21 +78,21 @@ The outcome of this work is nicely summarized in the abstract of Ref.~\onlinecit
|
||||
\label{tab:energy}
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{ldc}
|
||||
\begin{tabular}{llc}
|
||||
Method & \tabc{$E_c$} & Ref. \\
|
||||
\hline
|
||||
ASCI & -860.0(2) & \onlinecite{Eriksen_2020} \\
|
||||
iCIPT2 & -861.1(5) & \onlinecite{Eriksen_2020} \\
|
||||
CCSDTQ & -862.4 & \onlinecite{Eriksen_2020} \\
|
||||
DMRG & -862.8(7) & \onlinecite{Eriksen_2020} \\
|
||||
FCCR(2) & -863.0 & \onlinecite{Eriksen_2020} \\
|
||||
CAD-FCIQMC & -863.4 & \onlinecite{Eriksen_2020} \\
|
||||
AS-FCIQMC & -863.7(3) & \onlinecite{Eriksen_2020} \\
|
||||
SHCI & -864.2(2) & \onlinecite{Eriksen_2020} \\
|
||||
ASCI & $-860.0(2)$ & \onlinecite{Eriksen_2020} \\
|
||||
iCIPT2 & $-861.1(5)$ & \onlinecite{Eriksen_2020} \\
|
||||
CCSDTQ & $-862.4$ & \onlinecite{Eriksen_2020} \\
|
||||
DMRG & $-862.8(7)$ & \onlinecite{Eriksen_2020} \\
|
||||
FCCR(2) & $-863.0$ & \onlinecite{Eriksen_2020} \\
|
||||
CAD-FCIQMC & $-863.4$ & \onlinecite{Eriksen_2020} \\
|
||||
AS-FCIQMC & $-863.7(3)$ & \onlinecite{Eriksen_2020} \\
|
||||
SHCI & $-864.2(2)$ & \onlinecite{Eriksen_2020} \\
|
||||
\hline
|
||||
ph-AFQMC & -864.3(4) & \onlinecite{Lee_2020} \\
|
||||
ph-AFQMC & $-864.3(4)$ & \onlinecite{Lee_2020} \\
|
||||
\hline
|
||||
CIPSI & -8xx.x(x) & This work \\
|
||||
CIPSI & \titou{$-86x.x(x)$} & This work \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
@ -117,43 +117,48 @@ Being late to the party, we obviously cannot report blindly our CIPSI results.
|
||||
However, following the philosophy of Eriksen \textit{et al.}, \cite{Eriksen_2020} we will report our results with the most neutral tone, leaving the freedom to the reader to make up his/her mind.
|
||||
We then follow our usual ``protocol'' \cite{Scemama_2018,Scemama_2018b,Scemama_2019,Loos_2018a,Loos_2019,Loos_2020a,Loos_2020b,Loos_2020c} by performing a preliminary SCI calculation using Hartree-Fock orbitals in order to generate a SCI wave function with at least $10^7$ determinants.
|
||||
Natural orbitals (NOs) are then computed based on this wave function, and a new, larger SCI calculation is performed with this new set of orbitals.
|
||||
This has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit
|
||||
This has the advantage to produce a smoother and faster convergence of the SCI energy toward the FCI limit.
|
||||
The total SCI energy is defined as the sum of the variational energy $E_\text{var.}$ (computed via diagonalization of the CI matrix in the reference space) and a second-order perturbative correction $E_\text{PT2}$ which takes into account the external determinants, \ie, the determinants which do not belong to the variational space but are linked to the reference space via a nonzero matrix element. The magnitude of $E_\text{PT2}$ provides a qualitative idea of the ``distance'' to the FCI limit.
|
||||
As mentioned above, SCI+PT2 methods rely heavily on extrapolation, especially when one deals with medium-sized systems.
|
||||
We then linearly extrapolate the total SCI energy to $E_\text{PT2} = 0$ (which effectively corresponds to the FCI limit) using the two largest SCI wave functions.
|
||||
Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.
|
||||
Although it is not possible to provide a theoretically sound error bar, we estimate the extrapolation error by \titou{the difference in excitation energy between the largest SCI wave function and its corresponding extrapolated value.}
|
||||
We believe that it provides a very safe estimate of the extrapolation error.
|
||||
%Note that all the wave functions are eigenfunctions of the $\Hat{S}^2$ spin operator, as described in Ref.~\onlinecite{Applencourt_2018}.
|
||||
The corresponding energies are reported in Table \ref{tab:NOvsLO} as functions of the number of determinants in the variational space $N_\text{det}$.
|
||||
|
||||
A second run has been performed with localized orbitals.
|
||||
A Pipek-Mezey localization procedure \cite{Pipek_1989} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, and vi) the rest. \titou{More information needed here.}
|
||||
As one can see from the results of Table \ref{tab:NOvsLO}, the variational energy as well as the PT2 corrected energy is much lower with localized orbitals for a same number of determinants.
|
||||
Starting from the Hartree-Fock orbitals, a Pipek-Mezey localization procedure \cite{Pipek_1989} was performed in several orbital windows: i) core, ii) valence $\sigma$, iii) valence $\pi$, iv) valence $\pi^*$, v) valence $\sigma^*$, and vi) the higher virtual orbitals. \titou{More information needed here.}
|
||||
As one can see from the energies of Table \ref{tab:NOvsLO}, for a given value of $N_\text{det}$, the variational energy as well as the PT2-corrected energies are much lower with localized orbitals than with NOs. We, therefore, consider these energies more trustworthy, and we will based our best estimate of the correlation energy of benzene on these calculations.
|
||||
The convergence of the CIPSI correlation energy using localized orbitals is illustrated in Fig.~\ref{fig:CIPSI}, where one can see the behavior of $\Delta E_\text{var.}$, $\Delta E_\text{var.} + E_\text{PT2}$, and $\Delta E_\text{var.} + E_\text{rPT2}$ as a function of $N_\text{det}$ (left panel).
|
||||
The right panel of Fig.~\ref{fig:CIPSI} shows $\Delta E_\text{var.} + E_\text{PT2}$ and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of $E_\text{PT2}$ or $E_\text{rPT2}$, and their corresponding \titou{two}-point linear extrapolation curves that we have used to get our final estimate of the correlation energy.
|
||||
|
||||
% Results and discussion
|
||||
% Results
|
||||
Our final numbers are gathered in Table \ref{tab:extrap_dist_table}, where, following the notations of Ref.~\onlinecite{Eriksen_2020}, we report, in addition to the final variational energies $\Delta E_{\text{var.}}$, the
|
||||
extrapolation distances, $\Delta E_{\text{dist}}$, defined as the difference between the final computed energy, $\Delta E_{\text{final}}$, and the extrapolated energy, $\Delta E_{\text{extrap.}}$ associated with the ASCI, iCI, SHCI, CIPSI, and DMRG results.
|
||||
The three flavours of SCI fall into an interval ranging from $-860.0$ m$E_h$ (ASCI) to $-864.2$ m$E_h$ (SHCI), while the other methods yield correlation energies ranging from $-863.7$ to $-862.8$ m$E_h$. Our final CIPSI number is \titou{$-86x.xx$} m$E_h$.
|
||||
|
||||
% Timings
|
||||
The present calculations have been performed on the AMD partition of GENCI's Irene supercomputer.
|
||||
Each Irene's AMD node is a dual-socket AMD Rome (Epyc) CPU@2.60 GHz with 256GiB of RAM, with a total of 64 physical CPU cores.
|
||||
These nodes are connected via Infiniband HDR100.
|
||||
|
||||
The three flavours of SCI fall into an interval ranging from $-863.7$ to $-862.8$ m$E_h$.
|
||||
The CIPSI number is ?
|
||||
|
||||
%%$ FIG. 1 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[width=0.4\linewidth]{fig1a}
|
||||
\hspace{0.08\linewidth}
|
||||
\includegraphics[width=0.4\linewidth]{fig1b}
|
||||
\caption{
|
||||
Convergence of the CIPSI correlation energy for benzene using localized orbitals.
|
||||
Convergence of the CIPSI correlation energy using localized orbitals.
|
||||
Left: $\Delta E_\text{var.}$, $\Delta E_\text{var.} + E_\text{PT2}$, and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of the number of determinants in the variational space.
|
||||
Right: $\Delta E_\text{var.} + E_\text{PT2}$ and $\Delta E_\text{var.} + E_\text{rPT2}$ (in m$E_h$) as functions of $E_\text{PT2}$ or $E_\text{rPT2}$.
|
||||
The two-point linear extrapolation curves (dashed lines) are also reported.
|
||||
The \titou{two}-point linear extrapolation curves (dashed lines) are also reported.
|
||||
The theoretical best estimate of $-863$ m$E_h$ from Ref.~\onlinecite{Eriksen_2020} is marked by a black line for comparison purposes.
|
||||
\label{fig:CIPSI}
|
||||
}
|
||||
\end{figure*}
|
||||
|
||||
%%% TABLE II %%%
|
||||
\begin{squeezetable}
|
||||
%\begin{squeezetable}
|
||||
\begin{table*}
|
||||
\caption{Variational energy $E_\text{var.}$, second-order perturbative correction $E_\text{PT2}$ and its renormalized version $E_\text{rPT2}$ (in $E_h$) as a function of the number of determinants $N_\text{det}$ for the ground-state of the benzene molecule computed in the cc-pVDZ basis set.
|
||||
The statistical error on $E_\text{PT2}$, corresponding to one standard deviation, are reported in parenthesis.}
|
||||
@ -187,10 +192,11 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
|
||||
2\,621\,440 & $-231.439\,324$ & $-231.553\,845(572)$ & $-231.551\,544(560)$ & $-231.473\,751$ & $-231.555\,261(403)$ & $-231.554\,159(397)$ \\
|
||||
5\,242\,880 & $-231.450\,156$ & $-231.557\,541(534)$ & $-231.555\,558(524)$ & $-231.485\,829$ & $-231.558\,303(362)$ & $-231.557\,451(358)$ \\
|
||||
10\,485\,760 & $-231.461\,927$ & $-231.559\,390(481)$ & $-231.557\,796(474)$ & $-231.497\,515$ & $-231.562\,568(322)$ & $-231.561\,901(319)$ \\
|
||||
20\,971\,520 & $-231.474\,019$ & $-231.561\,315(430)$ & $-231.560\,063(424)$ & $-231.508\,714$ & $-231.564\,707(275)$ & $-231.564\,223(273)$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
\end{table*}
|
||||
\end{squeezetable}
|
||||
%\end{squeezetable}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%%% TABLE II %%%
|
||||
@ -199,7 +205,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
|
||||
The final variational energies $\Delta E_{\text{var.}}$ are also reported.
|
||||
See Ref.~\onlinecite{Eriksen_2020} for more details.
|
||||
All the energies are given in m$E_h$.
|
||||
\label{extrap_dist_table}
|
||||
\label{tab:extrap_dist_table}
|
||||
}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{lcccc}
|
||||
@ -208,7 +214,7 @@ The statistical error on $E_\text{PT2}$, corresponding to one standard deviation
|
||||
ASCI & $-737.1$ & $-835.4$ & $-860.0$ & $-24.6$ \\
|
||||
iCI & $-730.0$ & $-833.7$ & $-861.1$ & $-27.4$ \\
|
||||
SHCI & $-827.2$ & $-852.8$ & $-864.2$ & $-11.4$ \\
|
||||
CIPSI & $-8xx.x$ & $-8xx.x$ & $-8xx.x$ & $-xx.x$ \\
|
||||
CIPSI & \titou{$-8xx.x$} & \titou{$-8xx.x$} & \titou{$-86x.x$} & \titou{$-xx.x$} \\
|
||||
DMRG & $-859.2$ & $-859.2$ & $-862.8$ & $-3.6$ \\
|
||||
\end{tabular}
|
||||
\end{ruledtabular}
|
||||
|