mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-07 03:43:14 +01:00
147 lines
4.3 KiB
Fortran
147 lines
4.3 KiB
Fortran
double precision function j_simple(x,mu)
|
|
implicit none
|
|
double precision, intent(in) :: x,mu
|
|
double precision :: j_mu_simple,j_gauss_simple
|
|
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mur") then
|
|
j_simple = j_mu_simple(x,mu)
|
|
else if(j2e_type .eq. "Mugauss".or.j2e_type .eq. "Murgauss") then
|
|
j_simple = j_gauss_simple(x,mu) + j_mu_simple(x,mu)
|
|
endif
|
|
end
|
|
|
|
|
|
double precision function j_mu_simple(x,mu)
|
|
implicit none
|
|
double precision, intent(in):: x,mu
|
|
include 'constants.include.F'
|
|
BEGIN_DOC
|
|
! j_mu(mu,x) = 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
|
END_DOC
|
|
j_mu_simple = 0.5d0 * x * (1.D0 - derf(mu*x)) - 0.5d0 * inv_sq_pi/mu * dexp(-x*mu*x*mu)
|
|
|
|
end
|
|
|
|
double precision function j_gauss_simple(x,mu)
|
|
implicit none
|
|
double precision, intent(in):: x,mu
|
|
include 'constants.include.F'
|
|
BEGIN_DOC
|
|
! j_mu(mu,x) = c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
|
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
|
END_DOC
|
|
double precision :: x_tmp
|
|
x_tmp = alpha_mu_gauss * mu * x
|
|
j_gauss_simple = 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu) * dexp(-x_tmp*x_tmp)
|
|
|
|
end
|
|
|
|
double precision function j_mu_deriv(x,mu)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! d/dx j_mu(mu,x) = d/dx 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
|
! = 0.5*(1 - erf(mu x))
|
|
END_DOC
|
|
include 'constants.include.F'
|
|
double precision, intent(in) :: x,mu
|
|
j_mu_deriv = 0.5d0 * (1.d0 - derf(mu*x))
|
|
end
|
|
|
|
double precision function j_mu_deriv_2(x,mu)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! d^2/dx^2 j_mu(mu,x) = d^2/dx^2 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
|
|
! = -mu/sqrt(pi) * exp(-(mu x)^2)
|
|
END_DOC
|
|
include 'constants.include.F'
|
|
double precision, intent(in) :: x,mu
|
|
j_mu_deriv_2 = - mu * inv_sq_pi * dexp(-x*mu*x*mu)
|
|
end
|
|
|
|
double precision function j_gauss_deriv(x,mu)
|
|
implicit none
|
|
include 'constants.include.F'
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
|
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
|
! = -0.5 * mu * c * x * exp(-(alpha * mu * x)^2)
|
|
END_DOC
|
|
double precision :: x_tmp
|
|
x_tmp = alpha_mu_gauss * mu * x
|
|
j_gauss_deriv = -0.5d0 * mu * c_mu_gauss * x * exp(-x_tmp*x_tmp)
|
|
end
|
|
|
|
double precision function j_gauss_deriv_2(x,mu)
|
|
implicit none
|
|
include 'constants.include.F'
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
|
|
! with c = 27/(8 sqrt(pi)), alpha=3/2
|
|
! = 0.5 * mu * c * exp(-(alpha * mu * x)^2) * (2 (alpha*mu*x)^2 - 1)
|
|
END_DOC
|
|
double precision :: x_tmp
|
|
x_tmp = alpha_mu_gauss * mu * x
|
|
x_tmp = x_tmp * x_tmp
|
|
j_gauss_deriv_2 = 0.5d0 * mu * c_mu_gauss * exp(-x_tmp) * (2.d0*x_tmp - 1.d0)
|
|
end
|
|
|
|
double precision function j_erf_gauss_deriv(x,mu)
|
|
implicit none
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! d/dx (j_gauss(mu,x)+j_mu(mu,x))
|
|
END_DOC
|
|
double precision :: j_gauss_deriv,j_mu_deriv
|
|
j_erf_gauss_deriv = j_gauss_deriv(x,mu)+j_mu_deriv(x,mu)
|
|
end
|
|
|
|
double precision function j_erf_gauss_deriv_2(x,mu)
|
|
implicit none
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! d^2/dx^2 (j_gauss(mu,x)+j_mu(mu,x))
|
|
END_DOC
|
|
double precision :: j_gauss_deriv_2,j_mu_deriv_2
|
|
j_erf_gauss_deriv_2 = j_gauss_deriv_2(x,mu)+j_mu_deriv_2(x,mu)
|
|
end
|
|
|
|
|
|
double precision function pot_j_gauss(x,mu)
|
|
implicit none
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! effective scalar potential associated with the erf_gauss correlation factor
|
|
!
|
|
! 1/x( 1 - 2 * d/dx j_erf_gauss(x,mu)) - d^2/dx^2 j_erf_gauss(x,mu)) - d/dx d/dx (j_erf_gauss(x,mu))^2
|
|
END_DOC
|
|
double precision :: j_erf_gauss_deriv_2,j_erf_gauss_deriv
|
|
double precision :: deriv_1, deriv_2
|
|
pot_j_gauss = 0.d0
|
|
if(x.ne.0.d0)then
|
|
deriv_1 = j_erf_gauss_deriv(x,mu)
|
|
deriv_2 = j_erf_gauss_deriv_2(x,mu)
|
|
pot_j_gauss = 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
|
endif
|
|
|
|
end
|
|
|
|
double precision function pot_j_mu(x,mu)
|
|
implicit none
|
|
double precision, intent(in) :: x,mu
|
|
BEGIN_DOC
|
|
! effective scalar potential associated with the correlation factor
|
|
!
|
|
! 1/x( 1 - 2 * d/dx j_erf(x,mu)) - d^2/dx^2 j_erf(x,mu)) - d/dx d/dx (j_erf(x,mu))^2
|
|
END_DOC
|
|
double precision :: j_mu_deriv_2,j_mu_deriv
|
|
double precision :: deriv_1, deriv_2
|
|
pot_j_mu = 0.d0
|
|
if(x.ne.0.d0)then
|
|
deriv_1 = j_mu_deriv(x,mu)
|
|
deriv_2 = j_mu_deriv_2(x,mu)
|
|
pot_j_mu= 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
|
|
endif
|
|
|
|
end
|