10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 18:13:51 +01:00
QuantumPackage/src/utils_complex/dump_ao_2e_from_df.irp.f
Kevin Gasperich 02c6539daa fixed problem with iterating over unique 2-electron integrals
should loop over union of two sets of integrals:
set 1:
  i<=k
  j<=l
  ik<=jl
set 2:
  i>k
  j<l
  ik<=jl

looping over kpts in same way is incorrect
here I've relaxed the constraints over kpt indices, while keeping those over orbital indices
There is probably a more efficient way to do this where we have more kpt constraints and additional logic in orbital loops
2020-02-18 14:11:22 -06:00

118 lines
3.5 KiB
Fortran

program dump_ao_2e_from_df
call run_ao_dump
end
subroutine run_ao_dump
use map_module
implicit none
BEGIN_DOC
! fill ao bielec integral map using 3-index df integrals
END_DOC
integer :: i,k,j,l
integer :: ki,kk,kj,kl
integer :: ii,ik,ij,il
integer :: kikk2,kjkl2,jl2,ik2
integer :: i_ao,j_ao,i_df
complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:), ints_ikjl(:,:,:,:)
complex*16 :: integral,intmap, get_ao_two_e_integral_complex
double precision :: tmp_re,tmp_im
integer :: ao_num_kpt_2
logical :: use_map1
integer(keY_kind) :: idx_tmp
double precision :: sign
ao_num_kpt_2 = ao_num_per_kpt * ao_num_per_kpt
allocate( ints_jl(ao_num_per_kpt,ao_num_per_kpt,df_num))
do kl=1, kpt_num
do kj=1, kl
call idx2_tri_int(kj,kl,kjkl2)
if (kj < kl) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_jl(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kjkl2))
enddo
enddo
enddo
else
ints_jl = df_ao_integrals_complex(:,:,:,kjkl2)
endif
allocate( &
ints_ik(ao_num_per_kpt,ao_num_per_kpt,df_num), &
ints_ikjl(ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt) &
)
do kk=1,kl
ki=kconserv(kl,kk,kj)
if (ki > kl) cycle
!if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2)
!if (kikk2 > kjkl2) cycle
if (ki < kk) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_ik(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
enddo
enddo
enddo
! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/)))
else
ints_ik = df_ao_integrals_complex(:,:,:,kikk2)
endif
call zgemm('N','T', ao_num_kpt_2, ao_num_kpt_2, df_num, &
(1.d0,0.d0), ints_ik, ao_num_kpt_2, &
ints_jl, ao_num_kpt_2, &
(0.d0,0.d0), ints_ikjl, ao_num_kpt_2)
print'((A),4(I4))','IJKL',ki,kj,kk,kl
do il=1,ao_num_per_kpt
l=il+(kl-1)*ao_num_per_kpt
do ij=1,ao_num_per_kpt
j=ij+(kj-1)*ao_num_per_kpt
if (j>l) exit
call idx2_tri_int(j,l,jl2)
do ik=1,ao_num_per_kpt
k=ik+(kk-1)*ao_num_per_kpt
if (k>l) exit
do ii=1,ao_num_per_kpt
i=ii+(ki-1)*ao_num_per_kpt
if ((j==l) .and. (i>k)) exit
call idx2_tri_int(i,k,ik2)
if (ik2 > jl2) exit
integral = ints_ikjl(ii,ik,ij,il)
intmap = get_ao_two_e_integral_complex(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
! print*,i,k,j,l,real(integral),imag(integral)
if ((cdabs(integral) + cdabs(intmap)) < ao_integrals_threshold) then
cycle
endif
if (cdabs(integral-intmap) < 1.d-8) then
print'(4(I4),4(E15.7))',i,j,k,l,integral,intmap
else
print'(4(I4),4(E15.7),(A))',i,j,k,l,integral,intmap,'***'
endif
enddo !ii
enddo !ik
enddo !ij
enddo !il
enddo !kk
deallocate( &
ints_ik, &
ints_ikjl &
)
enddo !kj
enddo !kl
deallocate( ints_jl )
end