mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-14 18:13:51 +01:00
02c6539daa
should loop over union of two sets of integrals: set 1: i<=k j<=l ik<=jl set 2: i>k j<l ik<=jl looping over kpts in same way is incorrect here I've relaxed the constraints over kpt indices, while keeping those over orbital indices There is probably a more efficient way to do this where we have more kpt constraints and additional logic in orbital loops
118 lines
3.5 KiB
Fortran
118 lines
3.5 KiB
Fortran
program dump_ao_2e_from_df
|
|
call run_ao_dump
|
|
end
|
|
|
|
subroutine run_ao_dump
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! fill ao bielec integral map using 3-index df integrals
|
|
END_DOC
|
|
|
|
integer :: i,k,j,l
|
|
integer :: ki,kk,kj,kl
|
|
integer :: ii,ik,ij,il
|
|
integer :: kikk2,kjkl2,jl2,ik2
|
|
integer :: i_ao,j_ao,i_df
|
|
|
|
complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:), ints_ikjl(:,:,:,:)
|
|
|
|
complex*16 :: integral,intmap, get_ao_two_e_integral_complex
|
|
double precision :: tmp_re,tmp_im
|
|
integer :: ao_num_kpt_2
|
|
|
|
logical :: use_map1
|
|
integer(keY_kind) :: idx_tmp
|
|
double precision :: sign
|
|
|
|
ao_num_kpt_2 = ao_num_per_kpt * ao_num_per_kpt
|
|
|
|
|
|
allocate( ints_jl(ao_num_per_kpt,ao_num_per_kpt,df_num))
|
|
|
|
do kl=1, kpt_num
|
|
do kj=1, kl
|
|
call idx2_tri_int(kj,kl,kjkl2)
|
|
if (kj < kl) then
|
|
do i_ao=1,ao_num_per_kpt
|
|
do j_ao=1,ao_num_per_kpt
|
|
do i_df=1,df_num
|
|
ints_jl(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kjkl2))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
else
|
|
ints_jl = df_ao_integrals_complex(:,:,:,kjkl2)
|
|
endif
|
|
|
|
allocate( &
|
|
ints_ik(ao_num_per_kpt,ao_num_per_kpt,df_num), &
|
|
ints_ikjl(ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt) &
|
|
)
|
|
|
|
do kk=1,kl
|
|
ki=kconserv(kl,kk,kj)
|
|
if (ki > kl) cycle
|
|
!if ((kl == kj) .and. (ki > kk)) cycle
|
|
call idx2_tri_int(ki,kk,kikk2)
|
|
!if (kikk2 > kjkl2) cycle
|
|
if (ki < kk) then
|
|
do i_ao=1,ao_num_per_kpt
|
|
do j_ao=1,ao_num_per_kpt
|
|
do i_df=1,df_num
|
|
ints_ik(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/)))
|
|
else
|
|
ints_ik = df_ao_integrals_complex(:,:,:,kikk2)
|
|
endif
|
|
|
|
call zgemm('N','T', ao_num_kpt_2, ao_num_kpt_2, df_num, &
|
|
(1.d0,0.d0), ints_ik, ao_num_kpt_2, &
|
|
ints_jl, ao_num_kpt_2, &
|
|
(0.d0,0.d0), ints_ikjl, ao_num_kpt_2)
|
|
print'((A),4(I4))','IJKL',ki,kj,kk,kl
|
|
do il=1,ao_num_per_kpt
|
|
l=il+(kl-1)*ao_num_per_kpt
|
|
do ij=1,ao_num_per_kpt
|
|
j=ij+(kj-1)*ao_num_per_kpt
|
|
if (j>l) exit
|
|
call idx2_tri_int(j,l,jl2)
|
|
do ik=1,ao_num_per_kpt
|
|
k=ik+(kk-1)*ao_num_per_kpt
|
|
if (k>l) exit
|
|
do ii=1,ao_num_per_kpt
|
|
i=ii+(ki-1)*ao_num_per_kpt
|
|
if ((j==l) .and. (i>k)) exit
|
|
call idx2_tri_int(i,k,ik2)
|
|
if (ik2 > jl2) exit
|
|
integral = ints_ikjl(ii,ik,ij,il)
|
|
intmap = get_ao_two_e_integral_complex(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
|
|
! print*,i,k,j,l,real(integral),imag(integral)
|
|
if ((cdabs(integral) + cdabs(intmap)) < ao_integrals_threshold) then
|
|
cycle
|
|
endif
|
|
if (cdabs(integral-intmap) < 1.d-8) then
|
|
print'(4(I4),4(E15.7))',i,j,k,l,integral,intmap
|
|
else
|
|
print'(4(I4),4(E15.7),(A))',i,j,k,l,integral,intmap,'***'
|
|
endif
|
|
enddo !ii
|
|
enddo !ik
|
|
enddo !ij
|
|
enddo !il
|
|
enddo !kk
|
|
deallocate( &
|
|
ints_ik, &
|
|
ints_ikjl &
|
|
)
|
|
enddo !kj
|
|
enddo !kl
|
|
deallocate( ints_jl )
|
|
|
|
|
|
end
|
|
|