mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 20:34:58 +01:00
252 lines
8.7 KiB
Fortran
252 lines
8.7 KiB
Fortran
BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! density matrix for alpha electrons in the MO basis used for all DFT calculations based on the density
|
|
END_DOC
|
|
double precision :: delta_alpha(mo_num,mo_num,N_states)
|
|
if(density_for_dft .EQ. "damping_rs_dft")then
|
|
delta_alpha = one_e_dm_mo_alpha - data_one_e_dm_alpha_mo
|
|
one_e_dm_mo_alpha_for_dft = data_one_e_dm_alpha_mo + damping_for_rs_dft * delta_alpha
|
|
else if (density_for_dft .EQ. "input_density")then
|
|
one_e_dm_mo_alpha_for_dft = data_one_e_dm_alpha_mo
|
|
else if (density_for_dft .EQ. "input_density_ao")then
|
|
call ao_to_mo(data_one_e_dm_alpha_mo,size(data_one_e_dm_alpha_mo,1),one_e_dm_mo_alpha_for_dft,size(one_e_dm_mo_alpha_for_dft,1))
|
|
else if (density_for_dft .EQ. "WFT")then
|
|
provide mo_coef
|
|
one_e_dm_mo_alpha_for_dft = one_e_dm_mo_alpha
|
|
else if (density_for_dft .EQ. "KS")then
|
|
provide mo_coef
|
|
one_e_dm_mo_alpha_for_dft = one_body_dm_mo_alpha_one_det
|
|
else if (density_for_dft .EQ. "state_average_dens")then
|
|
one_e_dm_mo_alpha_for_dft = 0.d0
|
|
one_e_dm_mo_alpha_for_dft(:,:,1) = one_e_dm_mo_alpha_average(:,:)
|
|
endif
|
|
|
|
if(no_core_density)then
|
|
integer :: ii,i,j
|
|
do ii = 1, n_core_orb
|
|
i = list_core(ii)
|
|
do j = 1, mo_num
|
|
one_e_dm_mo_alpha_for_dft(j,i,:) = 0.d0
|
|
one_e_dm_mo_alpha_for_dft(i,j,:) = 0.d0
|
|
enddo
|
|
enddo
|
|
if(normalize_dm)then
|
|
double precision :: elec_alpha_frozen_num, elec_alpha_valence(N_states)
|
|
elec_alpha_frozen_num = elec_alpha_num - n_core_orb
|
|
elec_alpha_valence = 0.d0
|
|
integer :: istate
|
|
do istate = 1, N_states
|
|
do i = 1, mo_num
|
|
elec_alpha_valence(istate) += one_e_dm_mo_alpha_for_dft(i,i,istate)
|
|
enddo
|
|
elec_alpha_valence(istate) = elec_alpha_frozen_num/elec_alpha_valence(istate)
|
|
if( dabs(elec_alpha_valence(istate)) .lt.1.d-12)then
|
|
one_e_dm_mo_alpha_for_dft = 0.d0
|
|
else
|
|
one_e_dm_mo_alpha_for_dft(:,:,istate) = one_e_dm_mo_alpha_for_dft(:,:,istate) * elec_alpha_valence(istate)
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! density matrix for beta electrons in the MO basis used for all DFT calculations based on the density
|
|
END_DOC
|
|
double precision :: delta_beta(mo_num,mo_num,N_states)
|
|
one_e_dm_mo_beta_for_dft = 0.d0
|
|
if(density_for_dft .EQ. "damping_rs_dft")then
|
|
delta_beta = one_e_dm_mo_beta - data_one_e_dm_beta_mo
|
|
one_e_dm_mo_beta_for_dft = data_one_e_dm_beta_mo + damping_for_rs_dft * delta_beta
|
|
else if (density_for_dft .EQ. "input_density")then
|
|
one_e_dm_mo_beta_for_dft = data_one_e_dm_beta_mo
|
|
else if (density_for_dft .EQ. "input_density_ao")then
|
|
call ao_to_mo(data_one_e_dm_beta_mo,size(data_one_e_dm_beta_mo,1),one_e_dm_mo_beta_for_dft,size(one_e_dm_mo_beta_for_dft,1))
|
|
else if (density_for_dft .EQ. "WFT")then
|
|
provide mo_coef
|
|
one_e_dm_mo_beta_for_dft = one_e_dm_mo_beta
|
|
else if (density_for_dft .EQ. "KS")then
|
|
provide mo_coef
|
|
one_e_dm_mo_beta_for_dft = one_body_dm_mo_beta_one_det
|
|
else if (density_for_dft .EQ. "state_average_dens")then
|
|
one_e_dm_mo_beta_for_dft = 0.d0
|
|
one_e_dm_mo_beta_for_dft(:,:,1) = one_e_dm_mo_beta_average(:,:)
|
|
endif
|
|
|
|
|
|
if(no_core_density)then
|
|
integer :: ii,i,j
|
|
do ii = 1, n_core_orb
|
|
i = list_core(ii)
|
|
do j = 1, mo_num
|
|
one_e_dm_mo_beta_for_dft(j,i,:) = 0.d0
|
|
one_e_dm_mo_beta_for_dft(i,j,:) = 0.d0
|
|
enddo
|
|
enddo
|
|
double precision :: elec_beta_valence(N_states),elec_beta_frozen_num
|
|
integer :: istate
|
|
if(normalize_dm)then
|
|
elec_beta_frozen_num = elec_beta_num - n_core_orb
|
|
elec_beta_valence = 0.d0
|
|
do istate = 1, N_states
|
|
do i = 1, mo_num
|
|
elec_beta_valence(istate) += one_e_dm_mo_beta_for_dft(i,i,istate)
|
|
enddo
|
|
if(dabs(elec_beta_valence(istate)).lt.1.d-12)then
|
|
one_e_dm_mo_beta_for_dft = 0.d0
|
|
else
|
|
elec_beta_valence(istate) = elec_beta_frozen_num/elec_beta_valence(istate)
|
|
one_e_dm_mo_beta_for_dft(:,:,istate) = one_e_dm_mo_beta_for_dft(:,:,istate) * elec_beta_valence(istate)
|
|
endif
|
|
enddo
|
|
endif
|
|
endif
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_mo_for_dft, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
one_e_dm_mo_for_dft = one_e_dm_mo_beta_for_dft + one_e_dm_mo_alpha_for_dft
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_average_mo_for_dft, (mo_num,mo_num)]
|
|
implicit none
|
|
integer :: i
|
|
one_e_dm_average_mo_for_dft = one_e_dm_average_alpha_mo_for_dft + one_e_dm_average_beta_mo_for_dft
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_average_alpha_mo_for_dft, (mo_num,mo_num)]
|
|
implicit none
|
|
integer :: i
|
|
one_e_dm_average_alpha_mo_for_dft = 0.d0
|
|
do i = 1, N_states
|
|
one_e_dm_average_alpha_mo_for_dft(:,:) += one_e_dm_mo_alpha_for_dft(:,:,i) * state_average_weight(i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_average_beta_mo_for_dft, (mo_num,mo_num)]
|
|
implicit none
|
|
integer :: i
|
|
one_e_dm_average_beta_mo_for_dft = 0.d0
|
|
do i = 1, N_states
|
|
one_e_dm_average_beta_mo_for_dft(:,:) += one_e_dm_mo_beta_for_dft(:,:,i) * state_average_weight(i)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft, (ao_num,ao_num,N_states) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft, (ao_num,ao_num,N_states) ]
|
|
BEGIN_DOC
|
|
! one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft
|
|
END_DOC
|
|
implicit none
|
|
integer :: istate
|
|
double precision :: mo_alpha,mo_beta
|
|
|
|
one_e_dm_alpha_ao_for_dft = 0.d0
|
|
one_e_dm_beta_ao_for_dft = 0.d0
|
|
|
|
if (density_for_dft .EQ. "input_density_ao")then
|
|
one_e_dm_alpha_ao_for_dft = data_one_e_dm_alpha_ao
|
|
one_e_dm_beta_ao_for_dft = data_one_e_dm_beta_ao
|
|
else
|
|
do istate = 1, N_states
|
|
call mo_to_ao_no_overlap( one_e_dm_mo_alpha_for_dft(1,1,istate), &
|
|
size(one_e_dm_mo_alpha_for_dft,1), &
|
|
one_e_dm_alpha_ao_for_dft(1,1,istate), &
|
|
size(one_e_dm_alpha_ao_for_dft,1) )
|
|
call mo_to_ao_no_overlap( one_e_dm_mo_beta_for_dft(1,1,istate), &
|
|
size(one_e_dm_mo_beta_for_dft,1), &
|
|
one_e_dm_beta_ao_for_dft(1,1,istate), &
|
|
size(one_e_dm_beta_ao_for_dft,1) )
|
|
enddo
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_one_det, (mo_num,mo_num, N_states)]
|
|
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_one_det, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! One body density matrix on the |MO| basis for a single determinant
|
|
END_DOC
|
|
integer :: i
|
|
one_body_dm_mo_alpha_one_det = 0.d0
|
|
one_body_dm_mo_beta_one_det = 0.d0
|
|
do i =1, elec_alpha_num
|
|
one_body_dm_mo_alpha_one_det(i,i, 1:N_states) = 1.d0
|
|
enddo
|
|
do i =1, elec_beta_num
|
|
one_body_dm_mo_beta_one_det(i,i, 1:N_states) = 1.d0
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_mo_alpha_for_dft_no_core, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! density matrix for alpha electrons in the MO basis without the core orbitals
|
|
END_DOC
|
|
one_e_dm_mo_alpha_for_dft_no_core = one_e_dm_mo_alpha_for_dft
|
|
|
|
integer :: ii,i,j
|
|
do ii = 1, n_core_orb
|
|
i = list_core(ii)
|
|
do j = 1, mo_num
|
|
one_e_dm_mo_alpha_for_dft_no_core(j,i,:) = 0.d0
|
|
one_e_dm_mo_alpha_for_dft_no_core(i,j,:) = 0.d0
|
|
enddo
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [double precision, one_e_dm_mo_beta_for_dft_no_core, (mo_num,mo_num, N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! density matrix for beta electrons in the MO basis without the core orbitals
|
|
END_DOC
|
|
one_e_dm_mo_beta_for_dft_no_core = one_e_dm_mo_beta_for_dft
|
|
integer :: ii,i,j
|
|
do ii = 1, n_core_orb
|
|
i = list_core(ii)
|
|
do j = 1, mo_num
|
|
one_e_dm_mo_beta_for_dft_no_core(j,i,:) = 0.d0
|
|
one_e_dm_mo_beta_for_dft_no_core(i,j,:) = 0.d0
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft_no_core, (ao_num,ao_num,N_states) ]
|
|
&BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft_no_core, (ao_num,ao_num,N_states) ]
|
|
BEGIN_DOC
|
|
! one body density matrix on the AO basis based on one_e_dm_mo_alpha_for_dft_no_core
|
|
END_DOC
|
|
implicit none
|
|
integer :: istate
|
|
double precision :: mo_alpha,mo_beta
|
|
|
|
one_e_dm_alpha_ao_for_dft_no_core = 0.d0
|
|
one_e_dm_beta_ao_for_dft_no_core = 0.d0
|
|
do istate = 1, N_states
|
|
call mo_to_ao_no_overlap( one_e_dm_mo_alpha_for_dft_no_core(1,1,istate), &
|
|
size(one_e_dm_mo_alpha_for_dft_no_core,1), &
|
|
one_e_dm_alpha_ao_for_dft_no_core(1,1,istate), &
|
|
size(one_e_dm_alpha_ao_for_dft_no_core,1) )
|
|
call mo_to_ao_no_overlap( one_e_dm_mo_beta_for_dft_no_core(1,1,istate), &
|
|
size(one_e_dm_mo_beta_for_dft_no_core,1), &
|
|
one_e_dm_beta_ao_for_dft_no_core(1,1,istate), &
|
|
size(one_e_dm_beta_ao_for_dft_no_core,1) )
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|