10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-24 14:12:24 +02:00
QuantumPackage/src/scf_utils/fock_matrix_cplx.irp.f
2020-07-13 18:24:37 -05:00

823 lines
31 KiB
Fortran

BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_complex, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo_complex, (mo_num)]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
! |---------------------------------|
! | F | F - K/2 | F + K |
!
!
! F = 1/2 (Fa + Fb)
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo_complex = Fock_matrix_mo_alpha_complex
else
do j=1,elec_beta_num
! F-K
do i=1,elec_beta_num !CC
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))&
- (Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
! F+K/2
do i=elec_beta_num+1,elec_alpha_num !CA
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
! F
do i=elec_alpha_num+1, mo_num !CV
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))
enddo
enddo
do j=elec_beta_num+1,elec_alpha_num
! F+K/2
do i=1,elec_beta_num !AC
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))&
+ 0.5d0*(Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
! F
do i=elec_beta_num+1,elec_alpha_num !AA
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))
enddo
! F-K/2
do i=elec_alpha_num+1, mo_num !AV
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))&
- 0.5d0*(Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
enddo
do j=elec_alpha_num+1, mo_num
! F
do i=1,elec_beta_num !VC
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))
enddo
! F-K/2
do i=elec_beta_num+1,elec_alpha_num !VA
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j))&
- 0.5d0*(Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
! F+K
do i=elec_alpha_num+1,mo_num !VV
Fock_matrix_mo_complex(i,j) = 0.5d0*(Fock_matrix_mo_alpha_complex(i,j)+Fock_matrix_mo_beta_complex(i,j)) &
+ (Fock_matrix_mo_beta_complex(i,j) - Fock_matrix_mo_alpha_complex(i,j))
enddo
enddo
endif
do i = 1, mo_num
Fock_matrix_diag_mo_complex(i) = dble(Fock_matrix_mo_complex(i,i))
if (dabs(dimag(Fock_matrix_mo_complex(i,i))) .gt. 1.0d-12) then
!stop 'diagonal elements of Fock matrix should be real'
print *, 'diagonal elements of Fock matrix should be real',i,Fock_matrix_mo_complex(i,i)
!stop -1
endif
enddo
if(frozen_orb_scf)then
integer :: iorb,jorb
do i = 1, n_core_orb
iorb = list_core(i)
do j = 1, n_act_orb
jorb = list_act(j)
Fock_matrix_mo_complex(iorb,jorb) = (0.d0,0.d0)
Fock_matrix_mo_complex(jorb,iorb) = (0.d0,0.d0)
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_alpha_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_complex(Fock_matrix_ao_alpha_complex,size(Fock_matrix_ao_alpha_complex,1), &
Fock_matrix_mo_alpha_complex,size(Fock_matrix_mo_alpha_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_beta_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_complex(Fock_matrix_ao_beta_complex,size(Fock_matrix_ao_beta_complex,1), &
Fock_matrix_mo_beta_complex,size(Fock_matrix_mo_beta_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Fock matrix in AO basis set
END_DOC
if(frozen_orb_scf)then
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
else
if ( (elec_alpha_num == elec_beta_num).and. &
(level_shift == 0.) ) &
then
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_complex(i,j) = Fock_matrix_ao_alpha_complex(i,j)
enddo
enddo
else
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
endif
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_complex, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_complex , (ao_num, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
!TODO: finish implementing this: see complex qp1 (different mapping)
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
complex*16 :: integral, c0
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:)
ao_two_e_integral_alpha_complex = (0.d0,0.d0)
ao_two_e_integral_beta_complex = (0.d0,0.d0)
PROVIDE ao_two_e_integrals_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(4), jj(4), kk(4), ll(4), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
integer(key_kind) :: key1
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
!$OMP SCF_density_matrix_ao_beta_complex, &
!$OMP ao_integrals_map, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
! i<=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = values(k1)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
!$OMP SCF_density_matrix_ao_beta_complex, &
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map_2%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
! i>=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = values(k1)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_complex, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_alpha_complex(i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_alpha_complex(i,j)
Fock_matrix_ao_beta_complex (i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_beta_complex (i,j)
enddo
enddo
END_PROVIDER
!============================================!
! !
! kpts_real !
! !
!============================================!
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_kpts_real, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
integer :: i,j,k
do k=1,kpt_num
do j=1,mo_num_per_kpt
do i=1,mo_num_per_kpt
fock_matrix_mo_kpts_real(i,j,k) = dble(fock_matrix_mo_kpts(i,j,k))
enddo
enddo
enddo
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo_kpts, (mo_num_per_kpt,kpt_num)]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
! |---------------------------------|
! | F | F - K/2 | F + K |
!
!
! F = 1/2 (Fa + Fb)
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n,k
!todo: fix for kpts? (okay for simple cases)
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo_kpts = Fock_matrix_mo_alpha_kpts
else
do k=1,kpt_num
do j=1,elec_beta_num_kpts(k)
! F-K
do i=1,elec_beta_num_kpts(k) !CC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F+K/2
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !CA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !CV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
enddo
do j=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
! F+K/2
do i=1,elec_beta_num_kpts(k) !AC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !AA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
! F-K/2
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !AV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
enddo
do j=elec_alpha_num_kpts(k)+1, mo_num_per_kpt
! F
do i=1,elec_beta_num_kpts(k) !VC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
! F-K/2
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !VA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F+K
do i=elec_alpha_num_kpts(k)+1,mo_num_per_kpt !VV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k)) &
+ (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
enddo
enddo
endif
do k=1,kpt_num
do i = 1, mo_num_per_kpt
Fock_matrix_diag_mo_kpts(i,k) = dble(Fock_matrix_mo_kpts(i,i,k))
if (dabs(dimag(Fock_matrix_mo_kpts(i,i,k))) .gt. 1.0d-12) then
!stop 'diagonal elements of Fock matrix should be real'
print *, 'diagonal elements of Fock matrix should be real',i,Fock_matrix_mo_kpts(i,i,k)
!stop -1
endif
enddo
enddo
if(frozen_orb_scf)then
integer :: iorb,jorb
do k=1,kpt_num
! for tags: list_core, n_core_orb, n_act_orb, list_act
do i = 1, n_core_orb_kpts(k)
iorb = list_core_kpts(i,k)
do j = 1, n_act_orb_kpts(k)
jorb = list_act_kpts(j,k)
fock_matrix_mo_kpts(iorb,jorb,k) = (0.d0,0.d0)
fock_matrix_mo_kpts(jorb,iorb,k) = (0.d0,0.d0)
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_alpha_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_kpts(Fock_matrix_ao_alpha_kpts,size(Fock_matrix_ao_alpha_kpts,1), &
Fock_matrix_mo_alpha_kpts,size(Fock_matrix_mo_alpha_kpts,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_beta_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_kpts(Fock_matrix_ao_beta_kpts,size(Fock_matrix_ao_beta_kpts,1), &
Fock_matrix_mo_beta_kpts,size(Fock_matrix_mo_beta_kpts,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_kpts, (ao_num_per_kpt, ao_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! Fock matrix in AO basis set
END_DOC
if(frozen_orb_scf)then
call mo_to_ao_kpts(Fock_matrix_mo_kpts,size(Fock_matrix_mo_kpts,1), &
Fock_matrix_ao_kpts,size(Fock_matrix_ao_kpts,1))
else
integer :: k
do k=1,kpt_num
if ( (elec_alpha_num_kpts(k) == elec_beta_num_kpts(k)).and. &
(level_shift == 0.) ) &
then
integer :: i,j
do j=1,ao_num_per_kpt
do i=1,ao_num_per_kpt
Fock_matrix_ao_kpts(i,j,k) = Fock_matrix_ao_alpha_kpts(i,j,k)
enddo
enddo
else
!call mo_to_ao_complex(Fock_matrix_mo_kpts,size(Fock_matrix_mo_kpts,1), &
call mo_to_ao_kpts(Fock_matrix_mo_kpts,size(Fock_matrix_mo_kpts,1), &
Fock_matrix_ao_kpts,size(Fock_matrix_ao_kpts,1))
endif
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_kpts, (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_kpts , (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
!TODO: finish implementing this: see complex qp1 (different mapping)
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
complex*16 :: integral, c0
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:,:)
ao_two_e_integral_alpha_kpts = (0.d0,0.d0)
ao_two_e_integral_beta_kpts = (0.d0,0.d0)
PROVIDE ao_two_e_integrals_in_map scf_density_matrix_ao_alpha_kpts scf_density_matrix_ao_beta_kpts
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(4), jj(4), kk(4), ll(4), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
integer(key_kind) :: key1
integer :: kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts, kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map, ao_two_e_integral_alpha_kpts, ao_two_e_integral_beta_kpts)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
! i<=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = values(k1)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_kpts += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_kpts += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP kpt_i,kpt_j,kpt_k,kpt_l,idx_i,idx_j,idx_k,idx_l, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num_per_kpt,SCF_density_matrix_ao_alpha_kpts,kpt_num, irp_here, &
!$OMP SCF_density_matrix_ao_beta_kpts, &
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_kpts, ao_two_e_integral_beta_kpts)
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num), &
ao_two_e_integral_beta_tmp(ao_num_per_kpt,ao_num_per_kpt,kpt_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map_2%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
! i>=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
call get_kpt_idx_ao(i,kpt_i,idx_i)
call get_kpt_idx_ao(j,kpt_j,idx_j)
call get_kpt_idx_ao(k,kpt_k,idx_k)
call get_kpt_idx_ao(l,kpt_l,idx_l)
integral = values(k1)
if (kpt_l.eq.kpt_j) then
c0 = (scf_density_matrix_ao_alpha_kpts(idx_l,idx_j,kpt_j)+scf_density_matrix_ao_beta_kpts(idx_l,idx_j,kpt_j))*integral
if(kpt_i.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_k,kpt_i) += c0
ao_two_e_integral_beta_tmp (idx_i,idx_k,kpt_i) += c0
endif
if (kpt_l.eq.kpt_i) then
if(kpt_j.ne.kpt_k) then
print*,'problem in ',irp_here,' ikjl: ',kpt_i,kpt_k,kpt_j,kpt_l
stop 1
endif
ao_two_e_integral_alpha_tmp(idx_i,idx_l,kpt_i) -= SCF_density_matrix_ao_alpha_kpts(idx_k,idx_j,kpt_j) * integral
ao_two_e_integral_beta_tmp (idx_i,idx_l,kpt_i) -= scf_density_matrix_ao_beta_kpts (idx_k,idx_j,kpt_j) * integral
endif
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_kpts += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_kpts += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_kpts, (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_kpts, (ao_num_per_kpt, ao_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j,k
do k=1,kpt_num
do j=1,ao_num_per_kpt
do i=1,ao_num_per_kpt
Fock_matrix_ao_alpha_kpts(i,j,k) = ao_one_e_integrals_kpts(i,j,k) + ao_two_e_integral_alpha_kpts(i,j,k)
Fock_matrix_ao_beta_kpts (i,j,k) = ao_one_e_integrals_kpts(i,j,k) + ao_two_e_integral_beta_kpts (i,j,k)
enddo
enddo
enddo
END_PROVIDER