10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-24 14:12:24 +02:00
QuantumPackage/src/mo_basis/mos_cplx.irp.f
Kevin Gasperich 83ecf1ee2e modifications for kpts
{ao,mo}_num_per_kpt were being set as floats in python
now imported explicitly as ints
no default (could maybe fix with // ?)
2020-06-22 10:51:33 -05:00

482 lines
15 KiB
Fortran

!BEGIN_PROVIDER [ integer, mo_num_per_kpt ]
! implicit none
! BEGIN_DOC
! ! number of mos per kpt.
! END_DOC
! mo_num_per_kpt = mo_num/kpt_num
!END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_complex, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_imag(i,j) = coefficient of the i-th |AO| on the jth |MO|
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_complex(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_complex with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_complex(mo_coef_complex)
write(*,*) 'Read mo_coef_complex'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_complex, mo_num*ao_num, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_complex with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do i=1,mo_num
do j=1,ao_num
mo_coef_complex(j,i) = ao_ortho_canonical_coef_complex(j,i)
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_in_ao_ortho_basis_complex, (ao_num, mo_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients in orthogonalized |AO| basis
!
! $C^{-1}.C_{mo}$
END_DOC
call zgemm('N','N',ao_num,mo_num,ao_num,(1.d0,0.d0), &
ao_ortho_cano_coef_inv_cplx, size(ao_ortho_cano_coef_inv_cplx,1),&
mo_coef_complex, size(mo_coef_complex,1), (0.d0,0.d0), &
mo_coef_in_ao_ortho_basis_complex, size(mo_coef_in_ao_ortho_basis_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_complex_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! nonzero blocks of |MO| coefficients
!
END_DOC
integer :: i,j,k, mo_shft, ao_shft
mo_coef_complex_kpts = (0.d0,0.d0)
! do k=1,kpt_num
! mo_shft = (k-1)*mo_num_per_kpt
! ao_shft = (k-1)*ao_num_per_kpt
! do i=1,mo_num_per_kpt
! do j=1,ao_num_per_kpt
! mo_coef_complex_kpts(j,i,k) = mo_coef_complex(j+ao_shft,i+mo_shft)
! enddo
! enddo
! enddo
do k=1,kpt_num
do i=1,mo_num_per_kpt
do j=1,ao_num_per_kpt
mo_coef_complex_kpts(j,i,k) = mo_coef_kpts(j,i,k)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex, (mo_num,ao_num) ]
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex_conjg, (mo_num,ao_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients on |AO| basis set
END_DOC
integer :: i, j
do j=1,ao_num
do i=1,mo_num
mo_coef_transp_complex(i,j) = mo_coef_complex(j,i)
mo_coef_transp_complex_conjg(i,j) = dconjg(mo_coef_complex(j,i))
enddo
enddo
END_PROVIDER
subroutine ao_to_mo_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^\dagger.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, mo_num, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_complex, size(mo_coef_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', mo_num, mo_num, ao_num, &
(1.d0,0.d0), mo_coef_complex,size(mo_coef_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine ao_to_mo_noconjg_complex(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^T.A_ao.C
! needed for 4idx tranform in four_idx_novvvv
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,mo_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call zgemm('N','N', ao_num, mo_num, ao_num, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_complex, size(mo_coef_complex,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('T','N', mo_num, mo_num, ao_num, &
(1.d0,0.d0), mo_coef_complex,size(mo_coef_complex,1), &
T, ao_num, &
(0.d0,0.d0), A_mo, size(A_mo,1))
deallocate(T)
end
subroutine ao_ortho_cano_to_ao_cplx(A_ao,LDA_ao,A,LDA)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the orthogonal |AO| basis
!
! $C^{-1}.A_{ao}.C^{\dagger-1}$
END_DOC
integer, intent(in) :: LDA_ao,LDA
complex*16, intent(in) :: A_ao(LDA_ao,*)
complex*16, intent(out) :: A(LDA,*)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num,ao_num) )
call zgemm('C','N', ao_num, ao_num, ao_num, &
(1.d0,0.d0), &
ao_ortho_cano_coef_inv_cplx, size(ao_ortho_cano_coef_inv_cplx,1),&
A_ao,size(A_ao,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('N','N', ao_num, ao_num, ao_num, (1.d0,0.d0), &
T, size(T,1), &
ao_ortho_cano_coef_inv_cplx,size(ao_ortho_cano_coef_inv_cplx,1),&
(0.d0,0.d0), A, size(A,1))
deallocate(T)
end
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, mo_coef_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_kpts(i,j,k) = coefficient of the i-th |AO| on the jth |MO| in kth kpt
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j, k
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_kpts(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_kpts with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_kpts(mo_coef_kpts)
write(*,*) 'Read mo_coef_kpts'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_kpts, kpt_num*mo_num_per_kpt*ao_num_per_kpt, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_kpts with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do k=1,kpt_num
do i=1,mo_num_per_kpt
do j=1,ao_num_per_kpt
mo_coef_kpts(j,i,k) = ao_ortho_canonical_coef_kpts(j,i,k)
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_in_ao_ortho_basis_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients in orthogonalized |AO| basis
!
! $C^{-1}.C_{mo}$
END_DOC
integer :: k
do k=1,kpt_num
call zgemm('N','N',ao_num_per_kpt,mo_num_per_kpt,ao_num_per_kpt,(1.d0,0.d0), &
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), (0.d0,0.d0), &
mo_coef_in_ao_ortho_basis_kpts(:,:,k), size(mo_coef_in_ao_ortho_basis_kpts,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts_conjg, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients on |AO| basis set
END_DOC
integer :: i, j, k
do k=1,kpt_num
do j=1,ao_num_per_kpt
do i=1,mo_num_per_kpt
mo_coef_transp_kpts(i,j,k) = mo_coef_kpts(j,i,k)
mo_coef_transp_kpts_conjg(i,j,k) = dconjg(mo_coef_kpts(j,i,k))
enddo
enddo
enddo
END_PROVIDER
subroutine ao_to_mo_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
!todo: check this
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^\dagger.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
integer :: k
do k=1,kpt_num
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), A_ao(:,:,k),LDA_ao, &
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
T, ao_num_per_kpt, &
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
enddo
deallocate(T)
end
subroutine ao_to_mo_noconjg_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^T.A_ao.C
! needed for 4idx tranform in four_idx_novvvv
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
integer :: k
do k=1,kpt_num
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('T','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
T, ao_num_per_kpt, &
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
enddo
deallocate(T)
end
subroutine ao_ortho_cano_to_ao_kpts(A_ao,LDA_ao,A,LDA)
implicit none
!todo: check this; no longer using assumed-size arrays
BEGIN_DOC
! Transform A from the |AO| basis to the orthogonal |AO| basis
!
! $C^{-1}.A_{ao}.C^{\dagger-1}$
END_DOC
integer, intent(in) :: LDA_ao,LDA
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A(LDA,ao_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,ao_num_per_kpt) )
integer :: k
do k=1,kpt_num
call zgemm('C','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), &
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
A_ao(:,:,k),size(A_ao,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('N','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, (1.d0,0.d0), &
T, size(T,1), &
ao_ortho_cano_coef_inv_kpts(:,:,k),size(ao_ortho_cano_coef_inv_kpts,1),&
(0.d0,0.d0), A(:,:,k), size(A,1))
enddo
deallocate(T)
end
!============================================!
! !
! elec kpts !
! !
!============================================!
BEGIN_PROVIDER [ integer, elec_alpha_num_kpts, (kpt_num) ]
&BEGIN_PROVIDER [ integer, elec_beta_num_kpts, (kpt_num) ]
!todo: reorder? if not integer multiple, use some list of kpts to determine filling order
implicit none
integer :: i,k,kpt
PROVIDE elec_alpha_num elec_beta_num
do k=1,kpt_num
elec_alpha_num_kpts(k) = 0
elec_beta_num_kpts(k) = 0
enddo
kpt=1
do i=1,elec_beta_num
elec_alpha_num_kpts(kpt) += 1
elec_beta_num_kpts(kpt) += 1
kpt += 1
if (kpt > kpt_num) then
kpt = 1
endif
enddo
do i=elec_beta_num+1,elec_alpha_num
elec_alpha_num_kpts(kpt) += 1
kpt += 1
if (kpt > kpt_num) then
kpt = 1
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_occ_kpts, (mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! |MO| occupation numbers
END_DOC
PROVIDE ezfio_filename elec_beta_num_kpts elec_alpha_num_kpts
if (mpi_master) then
logical :: exists
call ezfio_has_mo_basis_mo_occ_kpts(exists)
if (exists) then
call ezfio_get_mo_basis_mo_occ_kpts(mo_occ_kpts)
else
mo_occ_kpts = 0.d0
integer :: i,k
do k=1,kpt_num
do i=1,elec_beta_num_kpts(k)
mo_occ_kpts(i,k) = 2.d0
enddo
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
mo_occ_kpts(i,k) = 1.d0
enddo
enddo
endif
write(*,*) 'Read mo_occ_kpts'
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( mo_occ_kpts, mo_num_per_kpt*kpt_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_occ_kpts with MPI'
endif
IRP_ENDIF
END_PROVIDER