mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 04:22:32 +01:00
610 lines
19 KiB
Plaintext
610 lines
19 KiB
Plaintext
|
|
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! two_bod_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
|
|
! 1 1 2 2 = chemist notations
|
|
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
|
!
|
|
END_DOC
|
|
integer :: dim1,dim2,dim3,dim4
|
|
double precision :: cpu_0,cpu_1
|
|
dim1 = mo_num
|
|
dim2 = mo_num
|
|
dim3 = mo_num
|
|
dim4 = mo_num
|
|
two_bod_alpha_beta_mo = 0.d0
|
|
print*,'providing two_bod_alpha_beta ...'
|
|
call wall_time(cpu_0)
|
|
call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
|
call wall_time(cpu_1)
|
|
print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0)
|
|
|
|
integer :: ii,jj,i,j,k,l
|
|
if(no_core_density .EQ. "no_core_dm")then
|
|
print*,'USING THE VALENCE ONLY TWO BODY DENSITY'
|
|
|
|
do ii = 1, n_core_orb ! 1
|
|
i = list_core(ii)
|
|
do j = 1, mo_num ! 2
|
|
do k = 1, mo_num ! 1
|
|
do l = 1, mo_num ! 2
|
|
! 2 2 1 1
|
|
two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0
|
|
two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0
|
|
two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0
|
|
two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0
|
|
|
|
two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0
|
|
two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0
|
|
two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0
|
|
two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
|
|
! 1 2 1 2 = physicist notations
|
|
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
|
!
|
|
END_DOC
|
|
integer :: i,j,k,l,istate
|
|
double precision :: cpu_0,cpu_1
|
|
two_bod_alpha_beta_mo_physicist = 0.d0
|
|
print*,'providing two_bod_alpha_beta_mo_physicist ...'
|
|
call wall_time(cpu_0)
|
|
do istate = 1, N_states
|
|
do i = 1, mo_num
|
|
do j = 1, mo_num
|
|
do k = 1, mo_num
|
|
do l = 1, mo_num
|
|
! 1 2 1 2 1 1 2 2
|
|
two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
call wall_time(cpu_1)
|
|
print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
|
!
|
|
! Assumes that the determinants are in psi_det
|
|
!
|
|
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
|
END_DOC
|
|
integer, intent(in) :: N_st,sze
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
double precision, intent(inout) :: u_0(sze,N_st)
|
|
integer :: k
|
|
double precision, allocatable :: u_t(:,:)
|
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
|
allocate(u_t(N_st,N_det))
|
|
do k=1,N_st
|
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
|
enddo
|
|
call dtranspose( &
|
|
u_0, &
|
|
size(u_0, 1), &
|
|
u_t, &
|
|
size(u_t, 1), &
|
|
N_det, N_st)
|
|
|
|
call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
|
deallocate(u_t)
|
|
|
|
do k=1,N_st
|
|
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
|
!
|
|
! Default should be 1,N_det,0,1
|
|
END_DOC
|
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
double precision, intent(in) :: u_t(N_st,N_det)
|
|
|
|
|
|
PROVIDE N_int
|
|
|
|
select case (N_int)
|
|
case (1)
|
|
call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (2)
|
|
call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (3)
|
|
call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case (4)
|
|
call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
case default
|
|
call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
end select
|
|
end
|
|
BEGIN_TEMPLATE
|
|
|
|
subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
double precision, intent(in) :: u_t(N_st,N_det)
|
|
|
|
double precision :: hij, sij
|
|
integer :: i,j,k,l
|
|
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
|
integer :: istate
|
|
integer :: krow, kcol, krow_b, kcol_b
|
|
integer :: lrow, lcol
|
|
integer :: mrow, mcol
|
|
integer(bit_kind) :: spindet($N_int)
|
|
integer(bit_kind) :: tmp_det($N_int,2)
|
|
integer(bit_kind) :: tmp_det2($N_int,2)
|
|
integer(bit_kind) :: tmp_det3($N_int,2)
|
|
integer(bit_kind), allocatable :: buffer(:,:)
|
|
integer :: n_doubles
|
|
integer, allocatable :: doubles(:)
|
|
integer, allocatable :: singles_a(:)
|
|
integer, allocatable :: singles_b(:)
|
|
integer, allocatable :: idx(:), idx0(:)
|
|
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
|
|
integer*8 :: k8
|
|
|
|
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
|
allocate(idx0(maxab))
|
|
|
|
do i=1,maxab
|
|
idx0(i) = i
|
|
enddo
|
|
|
|
! Prepare the array of all alpha single excitations
|
|
! -------------------------------------------------
|
|
|
|
PROVIDE N_int nthreads_davidson
|
|
|
|
! Alpha/Beta double excitations
|
|
! =============================
|
|
|
|
allocate( buffer($N_int,maxab), &
|
|
singles_a(maxab), &
|
|
singles_b(maxab), &
|
|
doubles(maxab), &
|
|
idx(maxab))
|
|
|
|
kcol_prev=-1
|
|
|
|
ASSERT (iend <= N_det)
|
|
ASSERT (istart > 0)
|
|
ASSERT (istep > 0)
|
|
|
|
do k_a=istart+ishift,iend,istep
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
if (kcol /= kcol_prev) then
|
|
call get_all_spin_singles_$N_int( &
|
|
psi_det_beta_unique, idx0, &
|
|
tmp_det(1,2), N_det_beta_unique, &
|
|
singles_b, n_singles_b)
|
|
endif
|
|
kcol_prev = kcol
|
|
|
|
! Loop over singly excited beta columns
|
|
! -------------------------------------
|
|
|
|
do i=1,n_singles_b
|
|
lcol = singles_b(i)
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
|
|
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
|
|
ASSERT (l_a <= N_det)
|
|
idx(j) = l_a
|
|
l_a = l_a+1
|
|
enddo
|
|
j = j-1
|
|
|
|
call get_all_spin_singles_$N_int( &
|
|
buffer, idx, tmp_det(1,1), j, &
|
|
singles_a, n_singles_a )
|
|
|
|
! Loop over alpha singles
|
|
! -----------------------
|
|
|
|
do k = 1,n_singles_a
|
|
l_a = singles_a(k)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
!!!!!!!!!!!!!!!!!! ALPHA BETA
|
|
do l= 1, N_states
|
|
c_1(l) = u_t(l,l_a)
|
|
c_2(l) = u_t(l,k_a)
|
|
enddo
|
|
call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
do k_a=istart+ishift,iend,istep
|
|
|
|
|
|
! Single and double alpha excitations
|
|
! ===================================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
! Initial determinant is at k_b in beta-major representation
|
|
! ----------------------------------------------------------------------
|
|
|
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
|
|
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
|
|
|
! Loop inside the beta column to gather all the connected alphas
|
|
lcol = psi_bilinear_matrix_columns(k_a)
|
|
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
|
do i=1,N_det_alpha_unique
|
|
if (l_a > N_det) exit
|
|
lcol = psi_bilinear_matrix_columns(l_a)
|
|
if (lcol /= kcol) exit
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
idx(i) = l_a
|
|
l_a = l_a+1
|
|
enddo
|
|
i = i-1
|
|
|
|
call get_all_spin_singles_and_doubles_$N_int( &
|
|
buffer, idx, spindet, i, &
|
|
singles_a, doubles, n_singles_a, n_doubles )
|
|
|
|
! Compute Hij for all alpha singles
|
|
! ----------------------------------
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
do i=1,n_singles_a
|
|
l_a = singles_a(i)
|
|
ASSERT (l_a <= N_det)
|
|
|
|
lrow = psi_bilinear_matrix_rows(l_a)
|
|
ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
|
!!!! MONO SPIN
|
|
do l= 1, N_states
|
|
c_1(l) = u_t(l,l_a)
|
|
c_2(l) = u_t(l,k_a)
|
|
enddo
|
|
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
|
|
|
enddo
|
|
|
|
|
|
!! Compute Hij for all alpha doubles
|
|
!! ----------------------------------
|
|
!
|
|
!do i=1,n_doubles
|
|
! l_a = doubles(i)
|
|
! ASSERT (l_a <= N_det)
|
|
|
|
! lrow = psi_bilinear_matrix_rows(l_a)
|
|
! ASSERT (lrow <= N_det_alpha_unique)
|
|
|
|
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
|
! do l=1,N_st
|
|
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! ! same spin => sij = 0
|
|
! enddo
|
|
!enddo
|
|
|
|
|
|
|
|
! Single and double beta excitations
|
|
! ==================================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
|
|
|
! Initial determinant is at k_b in beta-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
|
|
|
! Loop inside the alpha row to gather all the connected betas
|
|
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
|
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
|
do i=1,N_det_beta_unique
|
|
if (l_b > N_det) exit
|
|
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
|
if (lrow /= krow) exit
|
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
|
idx(i) = l_b
|
|
l_b = l_b+1
|
|
enddo
|
|
i = i-1
|
|
|
|
call get_all_spin_singles_and_doubles_$N_int( &
|
|
buffer, idx, spindet, i, &
|
|
singles_b, doubles, n_singles_b, n_doubles )
|
|
|
|
! Compute Hij for all beta singles
|
|
! ----------------------------------
|
|
|
|
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
do i=1,n_singles_b
|
|
l_b = singles_b(i)
|
|
ASSERT (l_b <= N_det)
|
|
|
|
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
|
l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
do l= 1, N_states
|
|
c_1(l) = u_t(l,l_a)
|
|
c_2(l) = u_t(l,k_a)
|
|
enddo
|
|
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
|
ASSERT (l_a <= N_det)
|
|
enddo
|
|
!
|
|
!! Compute Hij for all beta doubles
|
|
!! ----------------------------------
|
|
!
|
|
!do i=1,n_doubles
|
|
! l_b = doubles(i)
|
|
! ASSERT (l_b <= N_det)
|
|
|
|
! lcol = psi_bilinear_matrix_transp_columns(l_b)
|
|
! ASSERT (lcol <= N_det_beta_unique)
|
|
|
|
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
|
! l_a = psi_bilinear_matrix_transp_order(l_b)
|
|
! ASSERT (l_a <= N_det)
|
|
|
|
! do l=1,N_st
|
|
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
|
! ! same spin => sij = 0
|
|
! enddo
|
|
!enddo
|
|
|
|
|
|
! Diagonal contribution
|
|
! =====================
|
|
|
|
|
|
! Initial determinant is at k_a in alpha-major representation
|
|
! -----------------------------------------------------------------------
|
|
|
|
krow = psi_bilinear_matrix_rows(k_a)
|
|
ASSERT (krow <= N_det_alpha_unique)
|
|
|
|
kcol = psi_bilinear_matrix_columns(k_a)
|
|
ASSERT (kcol <= N_det_beta_unique)
|
|
|
|
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
|
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
|
|
|
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
|
|
double precision :: c_1(N_states),c_2(N_states)
|
|
do l = 1, N_states
|
|
c_1(l) = u_t(l,k_a)
|
|
enddo
|
|
|
|
call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
|
|
|
|
end do
|
|
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
|
|
|
end
|
|
|
|
SUBST [ N_int ]
|
|
|
|
1;;
|
|
2;;
|
|
3;;
|
|
4;;
|
|
N_int;;
|
|
|
|
END_TEMPLATE
|
|
|
|
subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
|
double precision, intent(in) :: c_1(N_states)
|
|
integer :: occ(N_int*bit_kind_size,2)
|
|
integer :: n_occ_ab(2)
|
|
integer :: i,j,h1,h2,istate
|
|
double precision :: c_1_bis
|
|
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
do istate = 1, N_states
|
|
c_1_bis = c_1(istate) * c_1(istate)
|
|
do i = 1, n_occ_ab(1)
|
|
h1 = occ(i,1)
|
|
do j = 1, n_occ_ab(2)
|
|
h2 = occ(j,2)
|
|
big_array(h1,h1,h2,h2,istate) += c_1_bis
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
|
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
|
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
|
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
|
double precision, intent(in) :: c_1(N_states)
|
|
integer :: occ(N_int*bit_kind_size,2)
|
|
integer :: n_occ_ab(2)
|
|
integer :: i,j,h1,h2,istate
|
|
double precision :: c_1_bis
|
|
BEGIN_DOC
|
|
! no factor 1/2 have to be taken into account as the permutations are already taken into account
|
|
END_DOC
|
|
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
do istate = 1, N_states
|
|
c_1_bis = c_1(istate) * c_1(istate)
|
|
do i = 1, n_occ_ab(1)
|
|
h1 = occ(i,1)
|
|
do j = 1, n_occ_ab(2)
|
|
h2 = occ(j,2)
|
|
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
|
|
enddo
|
|
do j = 1, n_occ_ab(1)
|
|
h2 = occ(j,1)
|
|
big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis
|
|
big_array_aa(h1,h1,h2,h2,istate) += c_1_bis
|
|
enddo
|
|
enddo
|
|
do i = 1, n_occ_ab(2)
|
|
h1 = occ(i,2)
|
|
do j = 1, n_occ_ab(2)
|
|
h2 = occ(j,2)
|
|
big_array_bb(h1,h1,h2,h2,istate) += c_1_bis
|
|
big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
|
|
subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
|
integer :: i,j,h1,h2,p1,p2,istate
|
|
integer :: exc(0:2,2,2)
|
|
double precision :: phase
|
|
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
|
h1 = exc(1,1,1)
|
|
h2 = exc(1,1,2)
|
|
p1 = exc(1,2,1)
|
|
p2 = exc(1,2,2)
|
|
do istate = 1, N_states
|
|
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
|
|
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
|
|
enddo
|
|
end
|
|
|
|
subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: dim1,dim2,dim3,dim4
|
|
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
|
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
|
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
|
integer :: occ(N_int*bit_kind_size,2)
|
|
integer :: n_occ_ab(2)
|
|
integer :: i,j,h1,h2,istate,p1
|
|
integer :: exc(0:2,2,2)
|
|
double precision :: phase
|
|
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
|
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
h1 = exc(1,1,1)
|
|
p1 = exc(1,2,1)
|
|
do istate = 1, N_states
|
|
do i = 1, n_occ_ab(2)
|
|
h2 = occ(i,2)
|
|
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
|
enddo
|
|
enddo
|
|
else
|
|
! Mono beta
|
|
h1 = exc(1,1,2)
|
|
p1 = exc(1,2,2)
|
|
do istate = 1, N_states
|
|
do i = 1, n_occ_ab(1)
|
|
h2 = occ(i,1)
|
|
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
|
enddo
|
|
enddo
|
|
endif
|
|
end
|