10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-15 02:23:51 +01:00
QuantumPackage/src/determinants/spindeterminants.irp.f
Kevin Gasperich 156be3b1bb minor changes
2020-02-23 16:05:23 -06:00

1462 lines
42 KiB
Fortran

!==============================================================================!
! !
! Independent alpha/beta parts !
! !
!==============================================================================!
use bitmasks
integer*8 function spin_det_search_key(det,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns an integer(8) corresponding to a determinant index for searching
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det(Nint)
integer(bit_kind), parameter :: unsigned_shift = -huge(1_bit_kind) ! 100...00
integer :: i
spin_det_search_key = det(1)
do i=2,Nint
spin_det_search_key = ieor(spin_det_search_key,det(i))
enddo
spin_det_search_key = spin_det_search_key+unsigned_shift
end
BEGIN_PROVIDER [ integer(bit_kind), psi_det_alpha, (N_int,psi_det_size) ]
implicit none
BEGIN_DOC
! List of $\alpha$ determinants of psi_det
END_DOC
integer :: i,k
do i=1,N_det
do k=1,N_int
psi_det_alpha(k,i) = psi_det(k,1,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), psi_det_beta, (N_int,psi_det_size) ]
implicit none
BEGIN_DOC
! List of $\beta$ determinants of psi_det
END_DOC
integer :: i,k
do i=1,N_det
do k=1,N_int
psi_det_beta(k,i) = psi_det(k,2,i)
enddo
enddo
END_PROVIDER
BEGIN_TEMPLATE
BEGIN_PROVIDER [ integer(bit_kind), psi_det_$alpha_unique, (N_int,psi_det_size) ]
&BEGIN_PROVIDER [ integer, N_det_$alpha_unique ]
implicit none
BEGIN_DOC
! Unique $\\$alpha$ determinants
END_DOC
integer :: i,j,k
integer, allocatable :: iorder(:)
integer*8, allocatable :: bit_tmp(:)
integer*8 :: last_key
integer*8, external :: spin_det_search_key
logical,allocatable :: duplicate(:)
allocate ( iorder(N_det), bit_tmp(N_det), duplicate(N_det) )
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i)
do i=1,N_det
iorder(i) = i
bit_tmp(i) = spin_det_search_key(psi_det_$alpha(1,i),N_int)
enddo
!$OMP END PARALLEL DO
call i8sort(bit_tmp,iorder,N_det)
N_det_$alpha_unique = 0
last_key = 0_8
do i=1,N_det
last_key = bit_tmp(i)
N_det_$alpha_unique += 1
do k=1,N_int
psi_det_$alpha_unique(k,N_det_$alpha_unique) = psi_det_$alpha(k,iorder(i))
enddo
duplicate(i) = .False.
enddo
j=1
do i=1,N_det_$alpha_unique-1
if (duplicate(i)) then
cycle
endif
j = i+1
do while (bit_tmp(j)==bit_tmp(i))
if (duplicate(j)) then
j += 1
cycle
endif
duplicate(j) = .True.
do k=1,N_int
if (psi_det_$alpha_unique(k,i) /= psi_det_$alpha_unique(k,j)) then
duplicate(j) = .False.
exit
endif
enddo
j+=1
if (j > N_det_$alpha_unique) then
exit
endif
enddo
enddo
j=1
do i=2,N_det_$alpha_unique
if (duplicate(i)) then
cycle
else
j += 1
psi_det_$alpha_unique(:,j) = psi_det_$alpha_unique(:,i)
endif
enddo
N_det_$alpha_unique = j
call write_int(6,N_det_$alpha_unique,'Number of unique $alpha determinants')
deallocate (iorder, bit_tmp, duplicate)
END_PROVIDER
SUBST [ alpha ]
alpha ;;
beta ;;
END_TEMPLATE
integer function get_index_in_psi_det_alpha_unique(key,Nint)
use bitmasks
BEGIN_DOC
! Returns the index of the determinant in the :c:data:`psi_det_alpha_unique` array
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key(Nint)
integer :: i, ibegin, iend, istep, l
integer(8) :: det_ref, det_search
integer(8), external :: spin_det_search_key
logical :: in_wavefunction
in_wavefunction = .False.
get_index_in_psi_det_alpha_unique = 0
ibegin = 1
iend = N_det_alpha_unique + 1
!DIR$ FORCEINLINE
det_ref = spin_det_search_key(key,Nint)
!DIR$ FORCEINLINE
det_search = spin_det_search_key(psi_det_alpha_unique(1,1),Nint)
istep = shiftr(iend-ibegin,1)
i=ibegin+istep
do while (istep > 0)
!DIR$ FORCEINLINE
det_search = spin_det_search_key(psi_det_alpha_unique(1,i),Nint)
if ( det_search > det_ref ) then
iend = i
else if ( det_search == det_ref ) then
exit
else
ibegin = i
endif
istep = shiftr(iend-ibegin,1)
i = ibegin + istep
end do
!DIR$ FORCEINLINE
do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref)
i = i-1
if (i == 0) then
exit
endif
enddo
i += 1
ASSERT (i <= N_det_alpha_unique)
!DIR$ FORCEINLINE
do while (spin_det_search_key(psi_det_alpha_unique(1,i),Nint) == det_ref)
if (key(1) /= psi_det_alpha_unique(1,i)) then
continue
else
in_wavefunction = .True.
!DIR$ IVDEP
!DIR$ LOOP COUNT MIN(3)
do l=2,Nint
if (key(l) /= psi_det_alpha_unique(l,i)) then
in_wavefunction = .False.
endif
enddo
if (in_wavefunction) then
get_index_in_psi_det_alpha_unique = i
return
endif
endif
i += 1
if (i > N_det_alpha_unique) then
ASSERT (get_index_in_psi_det_alpha_unique > 0)
return
endif
enddo
end
integer function get_index_in_psi_det_beta_unique(key,Nint)
use bitmasks
BEGIN_DOC
! Returns the index of the determinant in the :c:data:`psi_det_beta_unique` array
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key(Nint)
integer :: i, ibegin, iend, istep, l
integer(8) :: det_ref, det_search
integer(8), external :: spin_det_search_key
logical :: in_wavefunction
in_wavefunction = .False.
get_index_in_psi_det_beta_unique = 0
ibegin = 1
iend = N_det_beta_unique + 1
!DIR$ FORCEINLINE
det_ref = spin_det_search_key(key,Nint)
!DIR$ FORCEINLINE
det_search = spin_det_search_key(psi_det_beta_unique(1,1),Nint)
istep = shiftr(iend-ibegin,1)
i=ibegin+istep
do while (istep > 0)
!DIR$ FORCEINLINE
det_search = spin_det_search_key(psi_det_beta_unique(1,i),Nint)
if ( det_search > det_ref ) then
iend = i
else if ( det_search == det_ref ) then
exit
else
ibegin = i
endif
istep = shiftr(iend-ibegin,1)
i = ibegin + istep
end do
!DIR$ FORCEINLINE
do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref)
i = i-1
if (i == 0) then
exit
endif
enddo
i += 1
ASSERT (i <= N_det_beta_unique)
!DIR$ FORCEINLINE
do while (spin_det_search_key(psi_det_beta_unique(1,i),Nint) == det_ref)
if (key(1) /= psi_det_beta_unique(1,i)) then
continue
else
in_wavefunction = .True.
!DIR$ IVDEP
!DIR$ LOOP COUNT MIN(3)
do l=2,Nint
if (key(l) /= psi_det_beta_unique(l,i)) then
in_wavefunction = .False.
endif
enddo
if (in_wavefunction) then
get_index_in_psi_det_beta_unique = i
return
endif
endif
i += 1
if (i > N_det_beta_unique) then
ASSERT (get_index_in_psi_det_beta_unique > 0)
return
endif
enddo
end
subroutine write_spindeterminants
!todo: modify for complex (not called anywhere?)
if (is_complex) then
print*,irp_here,' not implemented for complex'
stop -1
endif
use bitmasks
implicit none
integer(8), allocatable :: tmpdet(:,:)
integer :: N_int2
integer :: i,j,k
integer(8) :: det_8(100)
integer(bit_kind) :: det_bk((100*8)/bit_kind)
equivalence (det_8, det_bk)
N_int2 = (N_int*bit_kind)/8
call ezfio_set_spindeterminants_n_det_alpha(N_det_alpha_unique)
call ezfio_set_spindeterminants_n_det_beta(N_det_beta_unique)
call ezfio_set_spindeterminants_n_det(N_det)
call ezfio_set_spindeterminants_n_int(N_int)
call ezfio_set_spindeterminants_bit_kind(bit_kind)
call ezfio_set_spindeterminants_n_states(N_states)
allocate(tmpdet(N_int2,N_det_alpha_unique))
do i=1,N_det_alpha_unique
do k=1,N_int
det_bk(k) = psi_det_alpha_unique(k,i)
enddo
do k=1,N_int2
tmpdet(k,i) = det_8(k)
enddo
enddo
call ezfio_set_spindeterminants_psi_det_alpha(psi_det_alpha_unique)
deallocate(tmpdet)
allocate(tmpdet(N_int2,N_det_beta_unique))
do i=1,N_det_beta_unique
do k=1,N_int
det_bk(k) = psi_det_beta_unique(k,i)
enddo
do k=1,N_int2
tmpdet(k,i) = det_8(k)
enddo
enddo
call ezfio_set_spindeterminants_psi_det_beta(psi_det_beta_unique)
deallocate(tmpdet)
if (is_complex) then
call ezfio_set_spindeterminants_psi_coef_matrix_values_complex(psi_bilinear_matrix_values_complex)
else
call ezfio_set_spindeterminants_psi_coef_matrix_values(psi_bilinear_matrix_values)
endif
call ezfio_set_spindeterminants_psi_coef_matrix_rows(psi_bilinear_matrix_rows)
call ezfio_set_spindeterminants_psi_coef_matrix_columns(psi_bilinear_matrix_columns)
end
BEGIN_PROVIDER [ double precision, det_alpha_norm, (N_det_alpha_unique) ]
&BEGIN_PROVIDER [ double precision, det_beta_norm, (N_det_beta_unique) ]
implicit none
BEGIN_DOC
! Norm of the $\alpha$ and $\beta$ spin determinants in the wave function:
!
! $||D_\alpha||_i = \sum_j C_{ij}^2$
END_DOC
integer :: i,j,k,l
double precision :: f
det_alpha_norm = 0.d0
det_beta_norm = 0.d0
if (is_complex) then
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
f = 0.d0
do l=1,N_states
f += cdabs(psi_bilinear_matrix_values_complex(k,l)*psi_bilinear_matrix_values_complex(k,l)) * state_average_weight(l)
enddo
det_alpha_norm(i) += f
det_beta_norm(j) += f
enddo
else
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
f = 0.d0
do l=1,N_states
f += psi_bilinear_matrix_values(k,l)*psi_bilinear_matrix_values(k,l) * state_average_weight(l)
enddo
det_alpha_norm(i) += f
det_beta_norm(j) += f
enddo
endif
det_alpha_norm = det_alpha_norm
det_beta_norm = det_beta_norm
END_PROVIDER
!==============================================================================!
! !
! Alpha x Beta Matrix !
! !
!==============================================================================!
BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_values, (N_det,N_states) ]
use bitmasks
PROVIDE psi_bilinear_matrix_rows
do k=1,N_det
do l=1,N_states
psi_bilinear_matrix_values(k,l) = psi_coef(k,l)
enddo
enddo
do l=1,N_states
call dset_order(psi_bilinear_matrix_values(1,l),psi_bilinear_matrix_order,N_det)
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, psi_bilinear_matrix_values_complex, (N_det,N_states) ]
use bitmasks
PROVIDE psi_bilinear_matrix_rows
do k=1,N_det
do l=1,N_states
psi_bilinear_matrix_values_complex(k,l) = psi_coef_complex(k,l)
enddo
enddo
do l=1,N_states
call cdset_order(psi_bilinear_matrix_values_complex(1,l),psi_bilinear_matrix_order,N_det)
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_rows , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns, (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order , (N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
! $D_\alpha^\dagger.C.D_\beta$
!
! Rows are $\alpha$ determinants and columns are $\beta$.
!
! Order refers to psi_det
END_DOC
integer :: i,j,k, l
integer(bit_kind) :: tmp_det(N_int,2)
! integer, external :: get_index_in_psi_det_sorted_bit
if (is_complex) then
PROVIDE psi_coef_sorted_bit_complex
else
PROVIDE psi_coef_sorted_bit
endif
integer*8, allocatable :: to_sort(:)
integer, external :: get_index_in_psi_det_alpha_unique
integer, external :: get_index_in_psi_det_beta_unique
allocate(to_sort(N_det))
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k,l)
do k=1,N_det
i = get_index_in_psi_det_alpha_unique(psi_det(1,1,k),N_int)
ASSERT (i>0)
ASSERT (i<=N_det_alpha_unique)
j = get_index_in_psi_det_beta_unique (psi_det(1,2,k),N_int)
ASSERT (j>0)
ASSERT (j<=N_det_beta_unique)
psi_bilinear_matrix_rows(k) = i
psi_bilinear_matrix_columns(k) = j
to_sort(k) = int(N_det_alpha_unique,8) * int(j-1,8) + int(i,8)
ASSERT (to_sort(k) > 0_8)
psi_bilinear_matrix_order(k) = k
enddo
!$OMP END PARALLEL DO
call i8sort(to_sort, psi_bilinear_matrix_order, N_det)
!$OMP PARALLEL
!$OMP SINGLE
call iset_order(psi_bilinear_matrix_rows,psi_bilinear_matrix_order,N_det)
!$OMP END SINGLE
!$OMP SINGLE
call iset_order(psi_bilinear_matrix_columns,psi_bilinear_matrix_order,N_det)
!$OMP END SINGLE
!$OMP END PARALLEL
deallocate(to_sort)
ASSERT (minval(psi_bilinear_matrix_rows) == 1)
ASSERT (minval(psi_bilinear_matrix_columns) == 1)
ASSERT (minval(psi_bilinear_matrix_order) == 1)
ASSERT (maxval(psi_bilinear_matrix_rows) == N_det_alpha_unique)
ASSERT (maxval(psi_bilinear_matrix_columns) == N_det_beta_unique)
ASSERT (maxval(psi_bilinear_matrix_order) == N_det)
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order_reverse , (N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! Order which allows to go from :c:data:`psi_bilinear_matrix` to :c:data:`psi_det`
END_DOC
integer :: k
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(k)
do k=1,N_det
psi_bilinear_matrix_order_reverse(psi_bilinear_matrix_order(k)) = k
enddo
!$OMP END PARALLEL DO
ASSERT (minval(psi_bilinear_matrix_order) == 1)
ASSERT (maxval(psi_bilinear_matrix_order) == N_det)
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_columns_loc, (N_det_beta_unique+1) ]
use bitmasks
implicit none
BEGIN_DOC
! Sparse coefficient matrix if the wave function is expressed in a bilinear form :
!
! $D_\alpha^\dagger.C.D_\beta$
!
! Rows are $\alpha$ determinants and columns are $\beta$.
!
! Order refers to :c:data:`psi_det`
END_DOC
integer :: i,j,k, l
l = psi_bilinear_matrix_columns(1)
psi_bilinear_matrix_columns_loc(l) = 1
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(k,l)
do k=2,N_det
if (psi_bilinear_matrix_columns(k) == psi_bilinear_matrix_columns(k-1)) then
cycle
else
l = psi_bilinear_matrix_columns(k)
psi_bilinear_matrix_columns_loc(l) = k
endif
if (psi_bilinear_matrix_columns(k) < 1) then
stop '(psi_bilinear_matrix_columns(k) < 1)'
endif
enddo
!$OMP END PARALLEL DO
psi_bilinear_matrix_columns_loc(N_det_beta_unique+1) = N_det+1
ASSERT (minval(psi_bilinear_matrix_columns_loc) == 1)
ASSERT (maxval(psi_bilinear_matrix_columns_loc) == N_det+1)
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_bilinear_matrix_transp_values, (N_det,N_states) ]
use bitmasks
implicit none
BEGIN_DOC
! Transpose of :c:data:`psi_bilinear_matrix`
!
! $D_\beta^\dagger.C^\dagger.D_\alpha$
!
! Rows are $\alpha$ determinants and columns are $\beta$, but the matrix is stored in row major
! format.
END_DOC
integer :: k,l
PROVIDE psi_bilinear_matrix_transp_rows
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,l)
do l=1,N_states
!$OMP DO
do k=1,N_det
psi_bilinear_matrix_transp_values (k,l) = psi_bilinear_matrix_values (k,l)
enddo
!$OMP ENDDO NOWAIT
enddo
!$OMP END PARALLEL
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(l)
do l=1,N_states
call dset_order(psi_bilinear_matrix_transp_values(1,l),psi_bilinear_matrix_transp_order,N_det)
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [ complex*16, psi_bilinear_matrix_transp_values_complex, (N_det,N_states) ]
use bitmasks
implicit none
BEGIN_DOC
! Transpose of :c:data:`psi_bilinear_matrix`
!
! $D_\beta^\dagger.C^\dagger.D_\alpha$
!
! Rows are $\alpha$ determinants and columns are $\beta$, but the matrix is stored in row major
! format.
END_DOC
integer :: k,l
PROVIDE psi_bilinear_matrix_transp_rows
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(k,l)
do l=1,N_states
!$OMP DO
do k=1,N_det
psi_bilinear_matrix_transp_values_complex (k,l) = psi_bilinear_matrix_values_complex (k,l)
enddo
!$OMP ENDDO NOWAIT
enddo
!$OMP END PARALLEL
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(l)
do l=1,N_states
call cdset_order(psi_bilinear_matrix_transp_values_complex(1,l),psi_bilinear_matrix_transp_order,N_det)
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_rows , (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_columns, (N_det) ]
&BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_order , (N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! Transpose of :c:data:`psi_bilinear_matrix`
!
! $D_\beta^\dagger.C^\dagger.D_\alpha$
!
! Rows are $\alpha$ determinants and columns are $\beta$, but the matrix is stored in row major
! format.
END_DOC
integer :: i,j,k,l
if (is_complex) then
PROVIDE psi_coef_sorted_bit_complex
else
PROVIDE psi_coef_sorted_bit
endif
integer*8, allocatable :: to_sort(:)
allocate(to_sort(N_det))
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l)
!$OMP DO
do k=1,N_det
psi_bilinear_matrix_transp_columns(k) = psi_bilinear_matrix_columns(k)
ASSERT (psi_bilinear_matrix_transp_columns(k) > 0)
ASSERT (psi_bilinear_matrix_transp_columns(k) <= N_det)
psi_bilinear_matrix_transp_rows (k) = psi_bilinear_matrix_rows (k)
ASSERT (psi_bilinear_matrix_transp_rows(k) > 0)
ASSERT (psi_bilinear_matrix_transp_rows(k) <= N_det)
i = psi_bilinear_matrix_transp_columns(k)
j = psi_bilinear_matrix_transp_rows (k)
to_sort(k) = int(N_det_beta_unique,8) * int(j-1,8) + int(i,8)
ASSERT (to_sort(k) > 0)
psi_bilinear_matrix_transp_order(k) = k
enddo
!$OMP ENDDO
!$OMP END PARALLEL
call i8radix_sort(to_sort, psi_bilinear_matrix_transp_order, N_det,-1)
call iset_order(psi_bilinear_matrix_transp_rows,psi_bilinear_matrix_transp_order,N_det)
call iset_order(psi_bilinear_matrix_transp_columns,psi_bilinear_matrix_transp_order,N_det)
deallocate(to_sort)
ASSERT (minval(psi_bilinear_matrix_transp_columns) == 1)
ASSERT (minval(psi_bilinear_matrix_transp_rows) == 1)
ASSERT (minval(psi_bilinear_matrix_transp_order) == 1)
ASSERT (maxval(psi_bilinear_matrix_transp_columns) == N_det_beta_unique)
ASSERT (maxval(psi_bilinear_matrix_transp_rows) == N_det_alpha_unique)
ASSERT (maxval(psi_bilinear_matrix_transp_order) == N_det)
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_transp_rows_loc, (N_det_alpha_unique+1) ]
use bitmasks
implicit none
BEGIN_DOC
! Location of the columns in the :c:data:`psi_bilinear_matrix`
END_DOC
integer :: i,j,k, l
l = psi_bilinear_matrix_transp_rows(1)
psi_bilinear_matrix_transp_rows_loc(l) = 1
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(k,l)
do k=2,N_det
if (psi_bilinear_matrix_transp_rows(k) == psi_bilinear_matrix_transp_rows(k-1)) then
cycle
else
l = psi_bilinear_matrix_transp_rows(k)
psi_bilinear_matrix_transp_rows_loc(l) = k
endif
enddo
!$OMP END PARALLEL DO
psi_bilinear_matrix_transp_rows_loc(N_det_alpha_unique+1) = N_det+1
ASSERT (minval(psi_bilinear_matrix_transp_rows_loc) == 1)
ASSERT (maxval(psi_bilinear_matrix_transp_rows_loc) == N_det+1)
END_PROVIDER
BEGIN_PROVIDER [ integer, psi_bilinear_matrix_order_transp_reverse , (N_det) ]
use bitmasks
implicit none
BEGIN_DOC
! Order which allows to go from :c:data:`psi_bilinear_matrix_order_transp` to
! :c:data:`psi_bilinear_matrix`
END_DOC
integer :: k
psi_bilinear_matrix_order_transp_reverse = -1
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(k)
do k=1,N_det
psi_bilinear_matrix_order_transp_reverse(psi_bilinear_matrix_transp_order(k)) = k
enddo
!$OMP END PARALLEL DO
ASSERT (minval(psi_bilinear_matrix_order_transp_reverse) == 1)
ASSERT (maxval(psi_bilinear_matrix_order_transp_reverse) == N_det)
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_bilinear_matrix, (N_det_alpha_unique,N_det_beta_unique,N_states) ]
implicit none
BEGIN_DOC
! Coefficient matrix if the wave function is expressed in a bilinear form :
!
! $D_\alpha^\dagger.C.D_\beta$
END_DOC
integer :: i,j,k,istate
psi_bilinear_matrix = 0.d0
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
do istate=1,N_states
psi_bilinear_matrix(i,j,istate) = psi_bilinear_matrix_values(k,istate)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, psi_bilinear_matrix_complex, (N_det_alpha_unique,N_det_beta_unique,N_states) ]
implicit none
BEGIN_DOC
! Coefficient matrix if the wave function is expressed in a bilinear form :
!
! $D_\alpha^\dagger.C.D_\beta$
END_DOC
integer :: i,j,k,istate
psi_bilinear_matrix_complex = (0.d0,0.d0)
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
do istate=1,N_states
psi_bilinear_matrix_complex(i,j,istate) = psi_bilinear_matrix_values_complex(k,istate)
enddo
enddo
END_PROVIDER
subroutine create_wf_of_psi_bilinear_matrix(truncate)
!todo: modify for complex (not called anywhere?)
if (is_complex) then
print*,irp_here,' not implemented for complex'
stop -1
endif
use bitmasks
implicit none
BEGIN_DOC
! Generates a wave function containing all possible products
! of $\alpha$ and $\beta$ determinants
END_DOC
logical, intent(in) :: truncate
integer :: i,j,k
integer(bit_kind) :: tmp_det(N_int,2)
integer :: idx
integer, external :: get_index_in_psi_det_sorted_bit
double precision :: norm(N_states)
PROVIDE psi_bilinear_matrix
call generate_all_alpha_beta_det_products
norm = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,idx,tmp_det) &
!$OMP SHARED(N_det_alpha_unique, N_det_beta_unique, N_det, &
!$OMP N_int, N_states, norm, psi_det_beta_unique, &
!$OMP psi_det_alpha_unique, psi_bilinear_matrix, &
!$OMP psi_coef_sorted_bit)
do j=1,N_det_beta_unique
do k=1,N_int
tmp_det(k,2) = psi_det_beta_unique(k,j)
enddo
do i=1,N_det_alpha_unique
do k=1,N_int
tmp_det(k,1) = psi_det_alpha_unique(k,i)
enddo
idx = get_index_in_psi_det_sorted_bit(tmp_det,N_int)
if (idx > 0) then
do k=1,N_states
psi_coef_sorted_bit(idx,k) = psi_bilinear_matrix(i,j,k)
!$OMP ATOMIC
norm(k) += psi_bilinear_matrix(i,j,k)*psi_bilinear_matrix(i,j,k)
enddo
endif
enddo
enddo
!$OMP END PARALLEL DO
do k=1,N_states
norm(k) = 1.d0/dsqrt(norm(k))
do i=1,N_det
psi_coef_sorted_bit(i,k) = psi_coef_sorted_bit(i,k)*norm(k)
enddo
enddo
psi_det = psi_det_sorted_bit
psi_coef = psi_coef_sorted_bit
TOUCH psi_det psi_coef
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
norm(1) = 0.d0
do i=1,N_det
norm(1) += psi_average_norm_contrib_sorted(i)
if (truncate) then
if (norm(1) >= 1.d0) then
exit
endif
if (psi_average_norm_contrib_sorted(i) == 0.d0) then
exit
endif
endif
enddo
N_det = min(i,N_det)
SOFT_TOUCH psi_det psi_coef N_det
end
subroutine generate_all_alpha_beta_det_products
!todo: modify for complex (only used by create_wf_of_psi_bilinear_matrix?)
if (is_complex) then
print*,irp_here,' not implemented for complex'
stop -1
endif
implicit none
BEGIN_DOC
! Creates a wave function from all possible $\alpha \times \beta$ determinants
END_DOC
integer :: i,j,k,l
integer :: iproc
integer, external :: get_index_in_psi_det_sorted_bit
integer(bit_kind), allocatable :: tmp_det(:,:,:)
logical, external :: is_in_wavefunction
PROVIDE H_apply_buffer_allocated
!$OMP PARALLEL DEFAULT(NONE) SHARED(psi_coef_sorted_bit,N_det_beta_unique,&
!$OMP N_det_alpha_unique, N_int, psi_det_alpha_unique, psi_det_beta_unique,&
!$OMP N_det) &
!$OMP PRIVATE(i,j,k,l,tmp_det,iproc)
!$ iproc = omp_get_thread_num()
allocate (tmp_det(N_int,2,N_det_alpha_unique))
!$OMP DO SCHEDULE(static,8)
do j=1,N_det_beta_unique
l = 1
do i=1,N_det_alpha_unique
do k=1,N_int
tmp_det(k,1,l) = psi_det_alpha_unique(k,i)
tmp_det(k,2,l) = psi_det_beta_unique (k,j)
enddo
if (.not.is_in_wavefunction(tmp_det(1,1,l),N_int)) then
l = l+1
endif
enddo
call fill_H_apply_buffer_no_selection(l-1, tmp_det, N_int, iproc)
enddo
!$OMP END DO
deallocate(tmp_det)
!$OMP END PARALLEL
call copy_H_apply_buffer_to_wf
SOFT_TOUCH psi_det psi_coef N_det
end
subroutine get_all_spin_singles_and_doubles(buffer, idx, spindet, Nint, size_buffer, singles, doubles, n_singles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single and double excitations in the list of
! unique $\alpha$ determinants.
!
! Warning: The buffer is transposed.
!
END_DOC
integer, intent(in) :: Nint, size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(Nint,size_buffer)
integer(bit_kind), intent(in) :: spindet(Nint)
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_singles
integer, intent(out) :: n_doubles
select case (Nint)
case (1)
call get_all_spin_singles_and_doubles_1(buffer, idx, spindet(1), size_buffer, singles, doubles, n_singles, n_doubles)
case (2)
call get_all_spin_singles_and_doubles_2(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
case (3)
call get_all_spin_singles_and_doubles_3(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
case (4)
call get_all_spin_singles_and_doubles_4(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
case default
call get_all_spin_singles_and_doubles_N_int(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
end select
end
subroutine get_all_spin_singles(buffer, idx, spindet, Nint, size_buffer, singles, n_singles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: Nint, size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(Nint,size_buffer)
integer(bit_kind), intent(in) :: spindet(Nint)
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: n_singles
select case (N_int)
case (1)
call get_all_spin_singles_1(buffer, idx, spindet(1), size_buffer, singles, n_singles)
return
case (2)
call get_all_spin_singles_2(buffer, idx, spindet, size_buffer, singles, n_singles)
case (3)
call get_all_spin_singles_3(buffer, idx, spindet, size_buffer, singles, n_singles)
case (4)
call get_all_spin_singles_4(buffer, idx, spindet, size_buffer, singles, n_singles)
case default
call get_all_spin_singles_N_int(buffer, idx, spindet, size_buffer, singles, n_singles)
end select
end
subroutine get_all_spin_doubles(buffer, idx, spindet, Nint, size_buffer, doubles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the double excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: Nint, size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(Nint,size_buffer)
integer(bit_kind), intent(in) :: spindet(Nint)
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_doubles
select case (N_int)
case (1)
call get_all_spin_doubles_1(buffer, idx, spindet(1), size_buffer, doubles, n_doubles)
case (2)
call get_all_spin_doubles_2(buffer, idx, spindet, size_buffer, doubles, n_doubles)
case (3)
call get_all_spin_doubles_3(buffer, idx, spindet, size_buffer, doubles, n_doubles)
case (4)
call get_all_spin_doubles_4(buffer, idx, spindet, size_buffer, doubles, n_doubles)
case default
call get_all_spin_doubles_N_int(buffer, idx, spindet, size_buffer, doubles, n_doubles)
end select
end
subroutine copy_psi_bilinear_to_psi(psi, isize)
!todo: modify for complex (not called anywhere?)
if (is_complex) then
print*,irp_here,' not implemented for complex'
stop -1
endif
implicit none
BEGIN_DOC
! Overwrites :c:data:`psi_det` and :c:data:`psi_coef` with the wave function
! in bilinear order
END_DOC
integer, intent(in) :: isize
integer(bit_kind), intent(out) :: psi(N_int,2,isize)
integer :: i,j,k,l
do k=1,isize
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
psi(1:N_int,1,k) = psi_det_alpha_unique(1:N_int,i)
psi(1:N_int,2,k) = psi_det_beta_unique(1:N_int,j)
enddo
end
BEGIN_PROVIDER [ integer*8, singles_alpha_csc_idx, (N_det_alpha_unique+1) ]
&BEGIN_PROVIDER [ integer*8, singles_alpha_csc_size ]
implicit none
BEGIN_DOC
! singles_alpha_csc_size : Dimension of the :c:data:`singles_alpha_csc` array
!
! singles_alpha_csc_idx : Index where the single excitations of determinant i start
END_DOC
integer :: i,j
integer, allocatable :: idx0(:), s(:)
allocate (idx0(N_det_alpha_unique))
do i=1, N_det_alpha_unique
idx0(i) = i
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, &
!$OMP elec_alpha_num, mo_num, singles_alpha_csc_idx) &
!$OMP PRIVATE(i,s,j)
allocate (s(elec_alpha_num * (mo_num-elec_alpha_num) ))
!$OMP DO SCHEDULE(static,64)
do i=1, N_det_alpha_unique
call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,&
N_det_alpha_unique, s, j)
singles_alpha_csc_idx(i+1) = int(j,8)
enddo
!$OMP END DO
deallocate(s)
!$OMP END PARALLEL
deallocate(idx0)
singles_alpha_csc_idx(1) = 1_8
do i=2, N_det_alpha_unique+1
singles_alpha_csc_idx(i) = singles_alpha_csc_idx(i) + singles_alpha_csc_idx(i-1)
enddo
singles_alpha_csc_size = singles_alpha_csc_idx(N_det_alpha_unique+1)
END_PROVIDER
BEGIN_PROVIDER [ integer, singles_alpha_csc, (singles_alpha_csc_size) ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
allocate (idx0(N_det_alpha_unique))
do i=1, N_det_alpha_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_alpha_unique, psi_det_alpha_unique, &
!$OMP idx0, N_int, singles_alpha_csc, singles_alpha_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,1)
do i=1, N_det_alpha_unique
call get_all_spin_singles( &
psi_det_alpha_unique, idx0, psi_det_alpha_unique(1,i), N_int,&
N_det_alpha_unique, singles_alpha_csc(singles_alpha_csc_idx(i)),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
BEGIN_PROVIDER [ integer*8, singles_beta_csc_idx, (N_det_beta_unique+1) ]
&BEGIN_PROVIDER [ integer*8, singles_beta_csc_size ]
implicit none
BEGIN_DOC
! singles_beta_csc_size : Dimension of the :c:data:`singles_beta_csc` array
!
! singles_beta_csc_idx : Index where the single excitations of determinant i start
END_DOC
integer :: i,j
integer, allocatable :: idx0(:), s(:)
allocate (idx0(N_det_beta_unique))
do i=1, N_det_beta_unique
idx0(i) = i
enddo
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, &
!$OMP elec_beta_num, mo_num, singles_beta_csc_idx) &
!$OMP PRIVATE(i,s,j)
allocate (s(elec_beta_num*(mo_num-elec_beta_num)))
!$OMP DO SCHEDULE(static,1)
do i=1, N_det_beta_unique
call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
N_det_beta_unique, s, j)
singles_beta_csc_idx(i+1) = int(j,8)
enddo
!$OMP END DO
deallocate(s)
!$OMP END PARALLEL
deallocate(idx0)
singles_beta_csc_idx(1) = 1_8
do i=2, N_det_beta_unique+1
singles_beta_csc_idx(i) = singles_beta_csc_idx(i) + singles_beta_csc_idx(i-1)
enddo
singles_beta_csc_size = singles_beta_csc_idx(N_det_beta_unique+1)
END_PROVIDER
BEGIN_PROVIDER [ integer, singles_beta_csc, (singles_beta_csc_size) ]
implicit none
BEGIN_DOC
! Indices of all single excitations
END_DOC
integer :: i, k
integer, allocatable :: idx0(:)
allocate (idx0(N_det_beta_unique))
do i=1, N_det_beta_unique
idx0(i) = i
enddo
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP SHARED(N_det_beta_unique, psi_det_beta_unique, &
!$OMP idx0, N_int, singles_beta_csc, singles_beta_csc_idx)&
!$OMP PRIVATE(i,k) SCHEDULE(static,64)
do i=1, N_det_beta_unique
call get_all_spin_singles( &
psi_det_beta_unique, idx0, psi_det_beta_unique(1,i), N_int,&
N_det_beta_unique, singles_beta_csc(singles_beta_csc_idx(i)),&
k)
enddo
!$OMP END PARALLEL DO
deallocate(idx0)
END_PROVIDER
subroutine get_all_spin_singles_and_doubles_1(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single and double excitations in the list of
! unique $\alpha$ determinants.
!
! /!\ : The buffer is transposed !
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(size_buffer)
integer(bit_kind), intent(in) :: spindet
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_singles
integer, intent(out) :: n_doubles
integer :: i
include 'utils/constants.include.F'
integer :: degree
n_singles = 1
n_doubles = 1
do i=1,size_buffer
degree = popcnt( xor( spindet, buffer(i) ) )
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
end
subroutine get_all_spin_singles_1(buffer, idx, spindet, size_buffer, singles, n_singles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(size_buffer)
integer(bit_kind), intent(in) :: spindet
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: n_singles
integer :: i
integer(bit_kind) :: v
integer :: degree
include 'utils/constants.include.F'
n_singles = 1
do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) ))
if (degree == 2) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
end
subroutine get_all_spin_doubles_1(buffer, idx, spindet, size_buffer, doubles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the double excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer(size_buffer)
integer(bit_kind), intent(in) :: spindet
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_doubles
integer :: i
include 'utils/constants.include.F'
integer :: degree
n_doubles = 1
do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) ))
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
endif
enddo
n_doubles = n_doubles-1
end
BEGIN_TEMPLATE
subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_buffer, singles, doubles, n_singles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single and double excitations in the list of
! unique $\alpha$ determinants.
!
! /!\ : The buffer is transposed !
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_singles
integer, intent(out) :: n_doubles
integer :: i,k
integer(bit_kind) :: xorvec($N_int)
integer :: degree
n_singles = 1
n_doubles = 1
do i=1,size_buffer
do k=1,$N_int
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,$N_int
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
end
subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, singles, n_singles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the single excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: singles(size_buffer)
integer, intent(out) :: n_singles
integer :: i,k
include 'utils/constants.include.F'
integer(bit_kind) :: xorvec($N_int)
integer :: degree
n_singles = 1
do i=1,size_buffer
do k=1,$N_int
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,$N_int
if ( (degree <= 2).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
enddo
n_singles = n_singles-1
end
subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, doubles, n_doubles)
use bitmasks
implicit none
BEGIN_DOC
!
! Returns the indices of all the double excitations in the list of
! unique $\alpha$ determinants.
!
END_DOC
integer, intent(in) :: size_buffer, idx(size_buffer)
integer(bit_kind), intent(in) :: buffer($N_int,size_buffer)
integer(bit_kind), intent(in) :: spindet($N_int)
integer, intent(out) :: doubles(size_buffer)
integer, intent(out) :: n_doubles
integer :: i,k, degree
include 'utils/constants.include.F'
integer(bit_kind) :: xorvec($N_int)
n_doubles = 1
do i=1,size_buffer
do k=1,$N_int
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
do k=2,$N_int
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
endif
enddo
n_doubles = n_doubles-1
end
SUBST [ N_int ]
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine wf_of_psi_bilinear_matrix(truncate)
!todo: modify for complex (not called anywhere?)
if (is_complex) then
print*,irp_here,' not implemented for complex'
stop -1
endif
use bitmasks
implicit none
BEGIN_DOC
! Generate a wave function containing all possible products
! of $\alpha$ and $\beta$ determinants
END_DOC
logical, intent(in) :: truncate
integer :: i,j,k
integer(bit_kind) :: tmp_det(N_int,2)
integer :: idx
integer, external :: get_index_in_psi_det_sorted_bit
double precision :: norm(N_states)
do k=1,N_det
i = psi_bilinear_matrix_rows(k)
j = psi_bilinear_matrix_columns(k)
psi_det(1:N_int,1,k) = psi_det_alpha_unique(1:N_int,i)
psi_det(1:N_int,2,k) = psi_det_beta_unique (1:N_int,j)
enddo
psi_coef(1:N_det,1:N_states) = psi_bilinear_matrix_values(1:N_det,1:N_states)
TOUCH psi_det psi_coef
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
do while (sum( dabs(psi_coef(N_det,1:N_states)) ) == 0.d0)
N_det -= 1
enddo
SOFT_TOUCH psi_det psi_coef N_det
end