10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-07 03:43:14 +01:00
QuantumPackage/plugins/local/slater_tc/h_mat_triple.irp.f
2024-05-06 18:58:12 +02:00

199 lines
6.3 KiB
Fortran

subroutine H_tc_s2_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
subroutine H_tc_s2_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) &
!$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot)
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---
subroutine H_tc_s2_dagger_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
subroutine H_tc_s2_dagger_u_0_with_pure_three_omp(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
!$OMP PARALLEL DO DEFAULT(NONE) SCHEDULE(dynamic,8) &
!$OMP SHARED(N_st, N_det, N_int, psi_det, u_0, v_0) &
!$OMP PRIVATE(ist, i, j, degree, hmono, htwoe, hthree,htot)
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---
subroutine triple_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
use bitmasks
BEGIN_DOC
! <key_j | H_tilde | key_i> for triple excitation
!!
!! WARNING !!
!
! Genuine triple excitations of the same spin are not yet implemented
END_DOC
implicit none
integer(bit_kind), intent(in) :: key_j(N_int,2),key_i(N_int,2)
integer, intent(in) :: Nint
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: degree
integer :: h1, p1, h2, p2, s1, s2, h3, p3, s3
integer :: holes_array(100,2),particles_array(100,2),degree_array(2)
double precision :: phase,sym_3_e_int_from_6_idx_tensor
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
call get_excitation_general(key_j, key_i, Nint,degree_array,holes_array, particles_array,phase)
degree = degree_array(1) + degree_array(2)
if(degree .ne. 3)return
if(degree_array(1)==3.or.degree_array(2)==3)then
if(degree_array(1) == 3)then
h1 = holes_array(1,1)
h2 = holes_array(2,1)
h3 = holes_array(3,1)
p1 = particles_array(1,1)
p2 = particles_array(2,1)
p3 = particles_array(3,1)
else
h1 = holes_array(1,2)
h2 = holes_array(2,2)
h3 = holes_array(3,2)
p1 = particles_array(1,2)
p2 = particles_array(2,2)
p3 = particles_array(3,2)
endif
hthree = sym_3_e_int_from_6_idx_tensor(p3, p2, p1, h3, h2, h1)
else
if(degree_array(1) == 2.and.degree_array(2) == 1)then ! double alpha + single beta
h1 = holes_array(1,1)
h2 = holes_array(2,1)
h3 = holes_array(1,2)
p1 = particles_array(1,1)
p2 = particles_array(2,1)
p3 = particles_array(1,2)
else if(degree_array(2) == 2 .and. degree_array(1) == 1)then ! double beta + single alpha
h1 = holes_array(1,2)
h2 = holes_array(2,2)
h3 = holes_array(1,1)
p1 = particles_array(1,2)
p2 = particles_array(2,2)
p3 = particles_array(1,1)
else
print*,'PB !!'
stop
endif
hthree = three_body_ints_bi_ort(p3,p2,p1,h3,h2,h1) - three_body_ints_bi_ort(p3,p2,p1,h3,h1,h2)
endif
hthree *= phase
htot = hthree
end