mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-13 09:33:55 +01:00
179 lines
4.3 KiB
Fortran
179 lines
4.3 KiB
Fortran
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Single-excitation matrix
|
|
END_DOC
|
|
|
|
integer :: i,j
|
|
|
|
do i=1,nMonoEx+1
|
|
do j=1,nMonoEx+1
|
|
SXmatrix(i,j)=0.D0
|
|
end do
|
|
end do
|
|
|
|
do i=1,nMonoEx
|
|
SXmatrix(1,i+1)=gradvec2(i)
|
|
SXmatrix(1+i,1)=gradvec2(i)
|
|
end do
|
|
|
|
do i=1,nMonoEx
|
|
do j=1,nMonoEx
|
|
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
|
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
|
end do
|
|
end do
|
|
|
|
if (bavard) then
|
|
do i=2,nMonoEx
|
|
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
|
end do
|
|
end if
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
|
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Eigenvectors/eigenvalues of the single-excitation matrix
|
|
END_DOC
|
|
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [real*8, SXvector, (nMonoEx+1)]
|
|
&BEGIN_PROVIDER [real*8, energy_improvement]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Best eigenvector of the single-excitation matrix
|
|
END_DOC
|
|
integer :: ierr,matz,i
|
|
real*8 :: c0
|
|
|
|
if (bavard) then
|
|
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
|
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
|
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
|
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
|
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
|
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
|
write(6,*)
|
|
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
|
endif
|
|
energy_improvement = SXeigenval(1)
|
|
|
|
integer :: best_vector
|
|
real*8 :: best_overlap
|
|
best_overlap=0.D0
|
|
do i=1,nMonoEx+1
|
|
if (SXeigenval(i).lt.0.D0) then
|
|
if (abs(SXeigenvec(1,i)).gt.best_overlap) then
|
|
best_overlap=abs(SXeigenvec(1,i))
|
|
best_vector=i
|
|
end if
|
|
end if
|
|
end do
|
|
|
|
energy_improvement = SXeigenval(best_vector)
|
|
|
|
c0=SXeigenvec(1,best_vector)
|
|
|
|
if (bavard) then
|
|
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
|
write(6,*) ' previous orbitals = ',SXeigenval(best_vector)
|
|
write(6,*) ' weight of the 1st element ',c0
|
|
endif
|
|
|
|
do i=1,nMonoEx+1
|
|
SXvector(i)=SXeigenvec(i,best_vector)/c0
|
|
end do
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, NewOrbs, (ao_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Updated orbitals
|
|
END_DOC
|
|
integer :: i,j,ialph
|
|
|
|
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
|
NatOrbsFCI, size(NatOrbsFCI,1), &
|
|
Umat, size(Umat,1), 0.d0, &
|
|
NewOrbs, size(NewOrbs,1))
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Orbital rotation matrix
|
|
END_DOC
|
|
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
|
logical :: converged
|
|
|
|
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
|
real*8 :: Tmat(mo_num,mo_num)
|
|
real*8 :: f
|
|
|
|
! the orbital rotation matrix T
|
|
Tmat(:,:)=0.D0
|
|
indx=1
|
|
do i=1,n_core_orb
|
|
ii=list_core(i)
|
|
do t=1,n_act_orb
|
|
tt=list_act(t)
|
|
indx+=1
|
|
Tmat(ii,tt)= SXvector(indx)
|
|
Tmat(tt,ii)=-SXvector(indx)
|
|
end do
|
|
end do
|
|
do i=1,n_core_orb
|
|
ii=list_core(i)
|
|
do a=1,n_virt_orb
|
|
aa=list_virt(a)
|
|
indx+=1
|
|
Tmat(ii,aa)= SXvector(indx)
|
|
Tmat(aa,ii)=-SXvector(indx)
|
|
end do
|
|
end do
|
|
do t=1,n_act_orb
|
|
tt=list_act(t)
|
|
do a=1,n_virt_orb
|
|
aa=list_virt(a)
|
|
indx+=1
|
|
Tmat(tt,aa)= SXvector(indx)
|
|
Tmat(aa,tt)=-SXvector(indx)
|
|
end do
|
|
end do
|
|
|
|
! Form the exponential
|
|
|
|
Tpotmat(:,:)=0.D0
|
|
Umat(:,:) =0.D0
|
|
do i=1,mo_num
|
|
Tpotmat(i,i)=1.D0
|
|
Umat(i,i) =1.d0
|
|
end do
|
|
iter=0
|
|
converged=.false.
|
|
do while (.not.converged)
|
|
iter+=1
|
|
f = 1.d0 / dble(iter)
|
|
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
|
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
|
Tpotmat2, size(Tpotmat2,1), &
|
|
Tmat, size(Tmat,1), 0.d0, &
|
|
Tpotmat, size(Tpotmat,1))
|
|
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
|
|
|
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
|
end do
|
|
END_PROVIDER
|
|
|
|
|
|
|