10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-05 05:33:52 +01:00
QuantumPackage/plugins/local/cipsi_tc_bi_ortho/selection.irp.f

1134 lines
39 KiB
Fortran

use bitmasks
subroutine get_mask_phase(det1, pm, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(out) :: pm(Nint,2)
integer(bit_kind) :: tmp1, tmp2
integer :: i
tmp1 = 0_8
tmp2 = 0_8
select case (Nint)
BEGIN_TEMPLATE
case ($Nint)
do i=1,$Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
SUBST [ Nint ]
1;;
2;;
3;;
4;;
END_TEMPLATE
case default
do i=1,Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
end select
end subroutine
subroutine select_connected(i_generator,E0,pt2_data,b,subset,csubset)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, subset, csubset
type(selection_buffer), intent(inout) :: b
type(pt2_type), intent(inout) :: pt2_data
integer :: k,l
double precision, intent(in) :: E0(N_states)
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, allocatable :: fock_diag_tmp(:,:)
if (csubset == 0) return
allocate(fock_diag_tmp(2,mo_num+1))
call build_fock_tmp_tc(fock_diag_tmp, psi_det_generators(1,1,i_generator), N_int)
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
! if ((subset == 1).and.(sum(hole_mask(:,2)) == 0_bit_kind)) then
! ! No beta electron to excite
! call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b)
! endif
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2_data,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2, Nint)
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: phasemask(Nint,2)
integer, intent(in) :: s1, s2, h1, h2, p1, p2
logical :: change
integer :: np
double precision, save :: res(0:1) = (/1d0, -1d0/)
integer :: h1_int, h2_int
integer :: p1_int, p2_int
integer :: h1_bit, h2_bit
integer :: p1_bit, p2_bit
h1_int = shiftr(h1-1,bit_kind_shift)+1
h1_bit = h1 - shiftl(h1_int-1,bit_kind_shift)-1
h2_int = shiftr(h2-1,bit_kind_shift)+1
h2_bit = h2 - shiftl(h2_int-1,bit_kind_shift)-1
p1_int = shiftr(p1-1,bit_kind_shift)+1
p1_bit = p1 - shiftl(p1_int-1,bit_kind_shift)-1
p2_int = shiftr(p2-1,bit_kind_shift)+1
p2_bit = p2 - shiftl(p2_int-1,bit_kind_shift)-1
! Put the phasemask bits at position 0, and add them all
h1_bit = int(shiftr(phasemask(h1_int,s1),h1_bit))
p1_bit = int(shiftr(phasemask(p1_int,s1),p1_bit))
h2_bit = int(shiftr(phasemask(h2_int,s2),h2_bit))
p2_bit = int(shiftr(phasemask(p2_int,s2),p2_bit))
np = h1_bit + p1_bit + h2_bit + p2_bit
if(p1 < h1) np = np + 1
if(p2 < h2) np = np + 1
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1
get_phase_bi = res(iand(np,1))
end
subroutine select_singles_and_doubles(i_generator, hole_mask, particle_mask, fock_diag_tmp, E0, pt2_data, buf, subset, csubset)
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted_tc
END_DOC
integer, intent(in) :: i_generator, subset, csubset
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
integer :: h1, h2, s1, s2, s3, i1, i2, ib, sp, k, i, j, nt, ii, sze
integer :: maskInd
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
integer :: l_a, nmax, idx
integer :: nb_count, maskInd_save
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2)
integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2)
logical :: fullMatch, ok
logical :: monoAdo, monoBdo
logical :: monoBdo_save
logical :: found
integer, allocatable :: preinteresting(:), prefullinteresting(:)
integer, allocatable :: interesting(:), fullinteresting(:)
integer, allocatable :: tmp_array(:)
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: coef_fullminilist_rev(:,:)
double precision, allocatable :: mat(:,:,:), mat_l(:,:,:), mat_r(:,:,:)
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_bilinear_matrix_order psi_bilinear_matrix_transp_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc_order
PROVIDE banned_excitation
monoAdo = .true.
monoBdo = .true.
if (csubset == 0) return
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
! Removed to avoid introducing determinants already presents in the wf
!double precision, parameter :: norm_thr = 1.d-16
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
! Pre-compute excitation degrees wrt alpha determinants
k=1
do i=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), &
psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
enddo
! Iterate on 0SD beta, and find alphas 0SDTQ such that exc_degree <= 4
do j=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,j), &
psi_det_generators(1,2,i_generator), nt, N_int)
if (nt > 2) cycle
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a)
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order(psi_bilinear_matrix_order(l_a))
! Removed to avoid introducing determinants already presents in the wf
!if (psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k=k+1
!endif
endif
enddo
enddo
! Pre-compute excitation degrees wrt beta determinants
do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo
! Iterate on 0S alpha, and find betas TQ such that exc_degree <= 4
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle
do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
i = psi_bilinear_matrix_transp_columns(l_a)
if (exc_degree(i) < 3) cycle
if (nt + exc_degree(i) <= 4) then
idx = psi_det_sorted_tc_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
! Removed to avoid introducing determinants already presents in the wf
!if(psi_average_norm_contrib_sorted_tc(idx) > norm_thr) then
indices(k) = idx
k=k+1
!endif
endif
enddo
enddo
deallocate(exc_degree)
nmax=k-1
call isort_noidx(indices,nmax)
! Start with 32 elements. Size will double along with the filtering.
allocate(preinteresting(0:32), prefullinteresting(0:32), &
interesting(0:32), fullinteresting(0:32))
preinteresting(:) = 0
prefullinteresting(:) = 0
do i=1,N_int
negMask(i,1) = not(psi_det_generators(i,1,i_generator))
negMask(i,2) = not(psi_det_generators(i,2,i_generator))
end do
do k=1,nmax
i = indices(k)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt <= 4) then
if(i <= N_det_selectors) then
sze = preinteresting(0)
if (sze+1 == size(preinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = preinteresting(0:sze)
deallocate(preinteresting)
allocate(preinteresting(0:2*sze))
preinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
preinteresting(0) = sze+1
preinteresting(sze+1) = i
else if(nt <= 2) then
sze = prefullinteresting(0)
if (sze+1 == size(prefullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = prefullinteresting(0:sze)
deallocate(prefullinteresting)
allocate(prefullinteresting(0:2*sze))
prefullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
prefullinteresting(0) = sze+1
prefullinteresting(sze+1) = i
end if
end if
end do
deallocate(indices)
allocate(banned(mo_num, mo_num,2), bannedOrb(mo_num, 2))
allocate(mat(N_states, mo_num, mo_num))
allocate(mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num))
maskInd = -1
do s1 = 1, 2
do i1 = N_holes(s1), 1, -1 ! Generate low excitations first
found = .False.
monoBdo_save = monoBdo
maskInd_save = maskInd
do s2 = s1, 2
ib = 1
if(s1 == s2) ib = i1+1
do i2 = N_holes(s2), ib, -1
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
found = .True.
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
if (.not.found) cycle
monoBdo = monoBdo_save
maskInd = maskInd_save
h1 = hole_list(i1,s1)
call apply_hole(psi_det_generators(1,1,i_generator), s1, h1, pmask, ok, N_int)
negMask = not(pmask)
interesting(0) = 0
fullinteresting(0) = 0
do ii = 1, preinteresting(0)
i = preinteresting(ii)
select case (N_int)
case (1)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
case (2)
mobMask(1:2,1) = iand(negMask(1:2,1), psi_det_sorted_tc(1:2,1,i))
mobMask(1:2,2) = iand(negMask(1:2,2), psi_det_sorted_tc(1:2,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
case (3)
mobMask(1:3,1) = iand(negMask(1:3,1), psi_det_sorted_tc(1:3,1,i))
mobMask(1:3,2) = iand(negMask(1:3,2), psi_det_sorted_tc(1:3,2,i))
nt = 0
do j = 3, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case (4)
mobMask(1:4,1) = iand(negMask(1:4,1), psi_det_sorted_tc(1:4,1,i))
mobMask(1:4,2) = iand(negMask(1:4,2), psi_det_sorted_tc(1:4,2,i))
nt = 0
do j = 4, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted_tc(1:N_int,1,i))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted_tc(1:N_int,2,i))
nt = 0
do j = N_int, 1, -1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
end select
if(nt <= 4) then
sze = interesting(0)
if (sze+1 == size(interesting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = interesting(0:sze)
deallocate(interesting)
allocate(interesting(0:2*sze))
interesting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
interesting(0) = sze+1
interesting(sze+1) = i
if(nt <= 2) then
sze = fullinteresting(0)
if(sze+1 == size(fullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = fullinteresting(0:sze)
deallocate(fullinteresting)
allocate(fullinteresting(0:2*sze))
fullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
end if
end if
enddo
do ii = 1, prefullinteresting(0)
i = prefullinteresting(ii)
nt = 0
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted_tc(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted_tc(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if (nt > 2) cycle
do j=N_int,2,-1
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted_tc(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted_tc(j,2,i))
nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
if (nt > 2) exit
end do
if(nt <= 2) then
sze = fullinteresting(0)
if (sze+1 == size(fullinteresting)) then
allocate (tmp_array(0:sze))
tmp_array(0:sze) = fullinteresting(0:sze)
deallocate(fullinteresting)
allocate(fullinteresting(0:2*sze))
fullinteresting(0:sze) = tmp_array(0:sze)
deallocate(tmp_array)
endif
fullinteresting(0) = sze+1
fullinteresting(sze+1) = i
end if
end do
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
do i = 1, fullinteresting(0)
do k = 1, N_int
fullminilist(k,1,i) = psi_selectors(k,1,fullinteresting(i))
fullminilist(k,2,i) = psi_selectors(k,2,fullinteresting(i))
enddo
enddo
do i = 1, interesting(0)
do k = 1, N_int
minilist(k,1,i) = psi_selectors(k,1,interesting(i))
minilist(k,2,i) = psi_selectors(k,2,interesting(i))
enddo
enddo
do s2 = s1, 2
sp = s1
if(s1 /= s2) sp = 3
ib = 1
if(s1 == s2) ib = i1+1
monoAdo = .true.
do i2 = N_holes(s2), ib, -1 ! Generate low excitations first
h2 = hole_list(i2,s2)
call apply_hole(pmask, s2,h2, mask, ok, N_int)
banned(:,:,1) = banned_excitation(:,:)
banned(:,:,2) = banned_excitation(:,:)
do j = 1, mo_num
bannedOrb(j, 1) = .true.
bannedOrb(j, 2) = .true.
enddo
do s3 = 1, 2
do i = 1, N_particles(s3)
bannedOrb(particle_list(i,s3), s3) = .false.
enddo
enddo
if(s1 /= s2) then
if(monoBdo) then
bannedOrb(h1,s1) = .false.
endif
if(monoAdo) then
bannedOrb(h2,s2) = .false.
monoAdo = .false.
endif
endif
maskInd = maskInd + 1
if(mod(maskInd, csubset) == (subset-1)) then
call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting)
if(fullMatch) cycle
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting, mat_l, mat_r)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r)
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
deallocate(fullminilist, minilist)
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
deallocate(banned, bannedOrb,mat)
deallocate(mat_l, mat_r)
end subroutine
! ---
subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
use bitmasks
implicit none
BEGIN_DOC
! Identify the determinants in det which are in the internal space. These are
! the determinants that can be produced by creating two particles on the mask.
END_DOC
integer, intent(in) :: i_gen, N
integer, intent(in) :: interesting(0:N)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
logical, intent(inout) :: banned(mo_num, mo_num)
logical, intent(out) :: fullMatch
integer :: i, j, na, nb, list(3)
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
fullMatch = .false.
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
genl : do i=1, N
! If det(i) can't be generated by the mask, cycle
do j=1, N_int
if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
end do
! If det(i) < det(i_gen), it hs already been considered
if(interesting(i) < i_gen) then
fullMatch = .true.
return
end if
! Identify the particles
do j=1, N_int
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
end do
call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int)
call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int)
banned(list(1), list(2)) = .true.
end do genl
end subroutine spot_isinwf
! ---
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting, mat_l, mat_r)
BEGIN_DOC
! Computes the contributions A(r,s) by
! comparing the external determinant to all the internal determinants det(i).
! an applying two particles (r,s) to the mask.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: sp, i_gen, N_sel
integer, intent(in) :: interesting(0:N_sel)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
logical, intent(inout) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num, 2)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num)
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer(bit_kind) :: phasemask(N_int,2)
PROVIDE psi_selectors_coef_transp_tc psi_det_sorted_tc
mat = 0d0
mat_l = 0d0
mat_r = 0d0
do i = 1, N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
! print*,'in selection '
do i = 1, N_sel
! call debug_det(det(1,1,i),N_int)
! print*,i,dabs(psi_selectors_coef_transp_tc(1,2,i) * psi_selectors_coef_transp_tc(1,1,i))
if(interesting(i) < 0) then
stop 'prefetch interesting(i) and det(i)'
endif
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if(nt > 4) cycle
do j = 2, N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
enddo
if(nt > 4) cycle
if (interesting(i) == i_gen) then
if(sp == 3) then
do k = 1, mo_num
do j = 1, mo_num
banned(j,k,2) = banned(k,j,1)
enddo
enddo
else
do k = 1, mo_num
do l = k+1, mo_num
banned(l,k,1) = banned(k,l,1)
enddo
enddo
endif
endif
if (interesting(i) >= i_gen) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
do j=2,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
call get_mask_phase(psi_det_sorted_tc(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
call get_d2_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
elseif(nt == 3) then
call get_d1_new(det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
else
call get_d0_new (det(1,1,i), phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, psi_selectors_coef_transp_tc(1, 1, interesting(i)))
endif
elseif(nt == 4) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d2(banned, p, sp)
elseif(nt == 3) then
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
call past_d1(bannedOrb, p)
endif
enddo
end subroutine splash_pq
! ---
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, mat_l, mat_r)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
double precision, intent(in) :: mat_l(N_states, mo_num, mo_num), mat_r(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
type(pt2_type), intent(inout) :: pt2_data
type(selection_buffer), intent(inout) :: buf
integer :: iii, s, degree
integer :: s1, s2, p1, p2, ib, j, istate, jstate
integer :: info, k , iwork(N_states+1)
integer(bit_kind) :: occ(N_int,2), n
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
logical :: do_cycle, ok, do_diag
double precision :: delta_E, val, Hii, w, tmp, alpha_h_psi
double precision :: E_shift
double precision :: i_h_alpha, alpha_h_i, psi_h_alpha
double precision :: e_pert(N_states), coef(N_states)
double precision :: s_weight(N_states,N_states)
double precision :: eigvalues(N_states+1)
double precision :: work(1+6*(N_states+1)+2*(N_states+1)**2)
integer, external :: number_of_holes, number_of_particles
logical, external :: is_a_two_holes_two_particles
logical, external :: is_a_1h1p
double precision, external :: diag_H_mat_elem_fock
PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs
do jstate = 1, N_states
do istate = 1, N_states
s_weight(istate,jstate) = dsqrt(selection_weight(istate)*selection_weight(jstate))
enddo
enddo
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'CFG') then
j = det_to_configuration(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
endif
do p1 = 1, mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2 = ib, mo_num
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
! TODO ??
!if(pseudo_sym)then
! if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
! w = 0.d0
! endif
!endif
! MANU: ERREUR dans les calculs puisque < I | H | J > = 0
! n'implique pas < I | H_TC | J > = 0 ??
!val = maxval(abs(mat(1:N_states, p1, p2)))
!if( val == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_ormas) then
logical, external :: det_allowed_ormas
if (.not.det_allowed_ormas(det)) cycle
endif
if(do_only_cas) then
if( number_of_particles(det) > 0 ) cycle
if( number_of_holes(det) > 0 ) cycle
endif
if(do_ddci) then
if(is_a_two_holes_two_particles(det)) cycle
endif
if(do_only_1h1p) then
if(.not.is_a_1h1p(det)) cycle
endif
if(seniority_max >= 0) then
s = 0
do k = 1, N_int
s = s + popcnt(ieor(det(k,1),det(k,2)))
enddo
if (s > seniority_max) cycle
endif
if(excitation_max >= 0) then
do_cycle = .True.
if(excitation_ref == 1) then
call get_excitation_degree(HF_bitmask, det(1,1), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_max)
elseif(excitation_ref == 2) then
do k = 1, N_dominant_dets_of_cfgs
call get_excitation_degree(dominant_dets_of_cfgs(1,1,k), det(1,1), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_max)
enddo
endif
if(do_cycle) cycle
endif
if(excitation_alpha_max >= 0) then
do_cycle = .True.
if(excitation_ref == 1) then
call get_excitation_degree_spin(HF_bitmask, det(1,1), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_max)
elseif (excitation_ref == 2) then
do k = 1, N_dominant_dets_of_cfgs
call get_excitation_degree_spin(dominant_dets_of_cfgs(1,1,k), det(1,1), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_alpha_max)
enddo
endif
if(do_cycle) cycle
endif
if(excitation_beta_max >= 0) then
do_cycle = .True.
if(excitation_ref == 1) then
call get_excitation_degree_spin(HF_bitmask, det(1,2), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_max)
elseif(excitation_ref == 2) then
do k = 1, N_dominant_dets_of_cfgs
call get_excitation_degree(dominant_dets_of_cfgs(1,2,k), det(1,2), degree, N_int)
do_cycle = do_cycle .and. (degree > excitation_beta_max)
enddo
endif
if(do_cycle) cycle
endif
w = 0.d0
e_pert = 0.d0
coef = 0.d0
do_diag = .False.
! psi_det_generators --> |i> of psi_0
! psi_coef_generators --> c_i of psi_0
!
! <alpha|H|psi_0> = \sum_i c_i <alpha|H|i>
! -------------------------------------------
! Non hermitian
! c_alpha = <alpha|H(j)|psi_0>/delta_E(alpha)
! e_alpha = c_alpha * <psi_0|H(j)|alpha>
! <alpha|H|psi_0> and <psi_0|H|alpha>
! <det|H(j)|psi_0> and transpose
! -------------------------------------------
double precision :: hmono, htwoe, hthree
call diag_htilde_mu_mat_fock_bi_ortho(N_int, det, hmono, htwoe, hthree, hii)
do istate = 1,N_states
delta_E = E0(istate) - Hii + E_shift
double precision :: alpha_h_psi_tmp, psi_h_alpha_tmp, error
if(debug_tc_pt2 == 1)then !! Using the old version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det_selectors
call htilde_mu_mat_bi_ortho_tot_slow(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_bi_ortho_tot_slow(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
call get_excitation_degree(psi_selectors(1,1,iii), det,degree,N_int)
if(degree == 0)then
print*,'problem !!!'
print*,'a determinant is already in the wave function !!'
print*,'it corresponds to the selector number ',iii
call debug_det(det,N_int)
stop
endif
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_selectors_coef_tc(iii,2,1) ! left function
alpha_h_psi += alpha_h_i * psi_selectors_coef_tc(iii,1,1) ! right function
enddo
else if(debug_tc_pt2 == 2)then !! debugging the new version
! psi_h_alpha_tmp = 0.d0
! alpha_h_psi_tmp = 0.d0
! do iii = 1, N_det_selectors ! old version
! call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
! call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
! psi_h_alpha_tmp += i_h_alpha * psi_selectors_coef_tc(iii,1,1) ! left function
! alpha_h_psi_tmp += alpha_h_i * psi_selectors_coef_tc(iii,2,1) ! right function
! enddo
psi_h_alpha_tmp = mat_l(istate, p1, p2) ! new version
alpha_h_psi_tmp = mat_r(istate, p1, p2) ! new version
psi_h_alpha = 0.d0
alpha_h_psi = 0.d0
do iii = 1, N_det ! old version
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_det(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_det(1,1,iii), N_int, alpha_h_i)
psi_h_alpha += i_h_alpha * psi_l_coef_bi_ortho(iii,1) ! left function
alpha_h_psi += alpha_h_i * psi_r_coef_bi_ortho(iii,1) ! right function
enddo
if(dabs(psi_h_alpha*alpha_h_psi/delta_E).gt.1.d-10)then
error = dabs(psi_h_alpha * alpha_h_psi - psi_h_alpha_tmp * alpha_h_psi_tmp)/dabs(psi_h_alpha * alpha_h_psi)
if(error.gt.1.d-2)then
call debug_det(det, N_int)
print*,'error =',error,psi_h_alpha * alpha_h_psi/delta_E,psi_h_alpha_tmp * alpha_h_psi_tmp/delta_E
print*,psi_h_alpha , alpha_h_psi
print*,psi_h_alpha_tmp , alpha_h_psi_tmp
print*,'selectors '
do iii = 1, N_det_selectors ! old version
print*,'iii',iii,psi_selectors_coef_tc(iii,1,1),psi_selectors_coef_tc(iii,2,1)
call htilde_mu_mat_opt_bi_ortho_no_3e(psi_selectors(1,1,iii), det, N_int, i_h_alpha)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, psi_selectors(1,1,iii), N_int, alpha_h_i)
print*,i_h_alpha,alpha_h_i
call debug_det(psi_selectors(1,1,iii),N_int)
enddo
! print*,'psi_det '
! do iii = 1, N_det! old version
! print*,'iii',iii,psi_l_coef_bi_ortho(iii,1),psi_r_coef_bi_ortho(iii,1)
! call debug_det(psi_det(1,1,iii),N_int)
! enddo
stop
endif
endif
else
psi_h_alpha = mat_l(istate, p1, p2)
alpha_h_psi = mat_r(istate, p1, p2)
endif
val = 4.d0 * psi_h_alpha * alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val)
! if (delta_E < 0.d0) then
! tmp = -tmp
! endif
e_pert(istate) = 0.25 * val / delta_E
! e_pert(istate) = 0.5d0 * (tmp - delta_E)
if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
coef(istate) = e_pert(istate) / psi_h_alpha
else
coef(istate) = alpha_h_psi / delta_E
endif
if(selection_tc == 1)then
if(e_pert(istate).lt.0.d0)then
e_pert(istate)=0.d0
else
e_pert(istate)=-e_pert(istate)
endif
else if(selection_tc == -1)then
if(e_pert(istate).gt.0.d0)e_pert(istate)=0.d0
endif
! if(selection_tc == 1 )then
! if(e_pert(istate).lt.0.d0)then
! e_pert(istate) = 0.d0
! endif
! else if(selection_tc == -1)then
! if(e_pert(istate).gt.0.d0)then
! e_pert(istate) = 0.d0
! endif
! endif
enddo
do istate = 1, N_states
alpha_h_psi = mat_r(istate, p1, p2)
psi_h_alpha = mat_l(istate, p1, p2)
pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate)
if(e_pert(istate).gt.0.d0)then! accumulate the positive part of the pt2
pt2_data % variance(istate) = pt2_data % variance(istate) + e_pert(istate)
else ! accumulate the negative part of the pt2
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate)
endif
select case (weight_selection)
case(5)
! Variance selection
if (h0_type == 'CFG') then
w = min(w, - psi_h_alpha * alpha_h_psi * s_weight(istate,istate)) &
/ c0_weight(istate)
else
w = min(w, - psi_h_alpha * alpha_h_psi * s_weight(istate,istate))
endif
case(6)
if (h0_type == 'CFG') then
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate)) &
/ c0_weight(istate)
else
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate))
endif
case default
! Energy selection
if (h0_type == 'CFG') then
!w = min(w, e_pert(istate) * s_weight(istate,istate)) / c0_weight(istate)
w = min(w, -dabs(e_pert(istate)) * s_weight(istate,istate)) / c0_weight(istate)
else
!w = min(w, e_pert(istate) * s_weight(istate,istate))
w = min(w, -dabs( e_pert(istate) ) * s_weight(istate,istate))
endif
endselect
enddo
if(h0_type == 'CFG') then
do k = 1, N_int
occ(k,1) = ieor(det(k,1), det(k,2))
occ(k,2) = iand(det(k,1), det(k,2))
enddo
call configuration_to_dets_size(occ, n, elec_alpha_num, N_int)
n = max(n,1)
w *= dsqrt(dble(n))
endif
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
endif
enddo ! end do p2
enddo ! end do p1
end subroutine fill_buffer_double
! ---
subroutine past_d1(bannedOrb, p)
use bitmasks
implicit none
logical, intent(inout) :: bannedOrb(mo_num, 2)
integer, intent(in) :: p(0:4, 2)
integer :: i,s
do s = 1, 2
do i = 1, p(0, s)
bannedOrb(p(i, s), s) = .true.
end do
end do
end subroutine past_d1
! ---
subroutine past_d2(banned, p, sp)
use bitmasks
implicit none
logical, intent(inout) :: banned(mo_num, mo_num)
integer, intent(in) :: p(0:4, 2), sp
integer :: i,j
if(sp == 3) then
do j=1,p(0,2)
do i=1,p(0,1)
banned(p(i,1), p(j,2)) = .true.
end do
end do
else
do i=1,p(0, sp)
do j=1,i-1
banned(p(j,sp), p(i,sp)) = .true.
banned(p(i,sp), p(j,sp)) = .true.
end do
end do
end if
end subroutine past_d2
! ---
subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
integer, intent(out) :: list(Nint*bit_kind_size)
integer, intent(out) :: n_elements
integer :: i, ishift
integer(bit_kind) :: l
n_elements = 0
ishift = 2
do i=1,Nint
l = string(i)
do while (l /= 0_bit_kind)
n_elements = n_elements+1
list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l)
l = iand(l,l-1_bit_kind)
enddo
ishift = ishift + bit_kind_size
enddo
end subroutine bitstring_to_list_in_selection
! ---