10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 18:13:51 +01:00
QuantumPackage/src/hartree_fock/fock_matrix_hf.irp.f

172 lines
6.2 KiB
Fortran

BEGIN_PROVIDER [ double precision, ao_two_e_integral_alpha, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_two_e_integral_beta , (ao_num, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
double precision :: integral, c0, c1, c2
double precision :: ao_two_e_integral, local_threshold
double precision, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
double precision, allocatable :: ao_two_e_integral_beta_tmp(:,:)
ao_two_e_integral_alpha = 0.d0
ao_two_e_integral_beta = 0.d0
if (do_direct_integrals) then
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,keys,values,p,q,r,s,i0,j0,k0,l0, &
!$OMP ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, c0, c1, c2, &
!$OMP local_threshold)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map,ao_integrals_threshold, ao_two_e_integral_schwartz, &
!$OMP ao_two_e_integral_alpha, ao_two_e_integral_beta)
allocate(keys(1), values(1))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
q = ao_num*ao_num*ao_num*ao_num
!$OMP DO SCHEDULE(static,64)
do p=1_8,q
call two_e_integrals_index_reverse(kk,ii,ll,jj,p)
if ( (kk(1)>ao_num).or. &
(ii(1)>ao_num).or. &
(jj(1)>ao_num).or. &
(ll(1)>ao_num) ) then
cycle
endif
k = kk(1)
i = ii(1)
l = ll(1)
j = jj(1)
logical, external :: ao_two_e_integral_zero
if (ao_two_e_integral_zero(i,k,j,l)) then
cycle
endif
local_threshold = ao_two_e_integral_schwartz(k,l)*ao_two_e_integral_schwartz(i,j)
if (local_threshold < ao_integrals_threshold) then
cycle
endif
i0 = i
j0 = j
k0 = k
l0 = l
values(1) = 0.d0
local_threshold = ao_integrals_threshold/local_threshold
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
c0 = SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)
c1 = SCF_density_matrix_ao_alpha(k,i)
c2 = SCF_density_matrix_ao_beta(k,i)
if ( dabs(c0)+dabs(c1)+dabs(c2) < local_threshold) then
cycle
endif
if (values(1) == 0.d0) then
values(1) = ao_two_e_integral(k0,l0,i0,j0)
endif
integral = c0 * values(1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(1)
ao_two_e_integral_alpha_tmp(l,j) -= c1 * integral
ao_two_e_integral_beta_tmp (l,j) -= c2 * integral
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
else
PROVIDE ao_two_e_integrals_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(8), jj(8), kk(8), ll(8), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha,SCF_density_matrix_ao_beta,&
!$OMP ao_integrals_map, ao_two_e_integral_alpha, ao_two_e_integral_beta)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = 0.d0
ao_two_e_integral_beta_tmp = 0.d0
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
call two_e_integrals_index_reverse(kk,ii,ll,jj,keys(k1))
do k2=1,8
if (kk(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = (SCF_density_matrix_ao_alpha(k,l)+SCF_density_matrix_ao_beta(k,l)) * values(k1)
ao_two_e_integral_alpha_tmp(i,j) += integral
ao_two_e_integral_beta_tmp (i,j) += integral
integral = values(k1)
ao_two_e_integral_alpha_tmp(l,j) -= SCF_density_matrix_ao_alpha(k,i) * integral
ao_two_e_integral_beta_tmp (l,j) -= SCF_density_matrix_ao_beta (k,i) * integral
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, Fock_matrix_ao_alpha, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_ao_beta, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_alpha(i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_alpha(i,j)
Fock_matrix_ao_beta (i,j) = ao_one_e_integrals(i,j) + ao_two_e_integral_beta (i,j)
enddo
enddo
END_PROVIDER