10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-01 19:05:29 +02:00
QuantumPackage/src/cipsi_tc_bi_ortho/get_d1_good.irp.f
2023-09-15 11:37:11 +02:00

455 lines
15 KiB
Fortran

subroutine get_d1_new(gen, phasemask, bannedOrb, banned, mat_l, mat_r, mask, h, p, sp, coefs)
!todo: indices should be okay for complex?
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states,2)
double precision, intent(inout) :: mat_l(N_states, mo_num, mo_num)
double precision, intent(inout) :: mat_r(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi
double precision, external :: mo_two_e_integral_complex
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib, k, l, mm
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
double precision, allocatable :: hij_cache(:,:)
double precision :: hij, tmp_rowij(N_states, mo_num), tmp_rowij2(N_states, mo_num)
double precision, allocatable :: hji_cache(:,:)
double precision :: hji, tmp_rowji(N_states, mo_num), tmp_rowji2(N_states, mo_num)
! PROVIDE mo_integrals_map N_int
! print*,'in get_d1_new'
! call debug_det(gen,N_int)
! print*,'coefs',coefs(1,:)
allocate (lbanned(mo_num, 2))
allocate (hij_cache(mo_num,2))
allocate (hji_cache(mo_num,2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,p2,mm,hfix)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,p1,mm,hfix)
enddo
!! <alpha|H|psi>
tmp_rowij = 0.d0
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,putj) = tmp_rowij(k,putj) + hij * coefs(k,2)
enddo
endif
end do
if(ma == 1) then
mat_r(1:N_states,1:mo_num,puti) = mat_r(1:N_states,1:mo_num,puti) + tmp_rowij(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,puti,l) = mat_r(k,puti,l) + tmp_rowij(k,l)
enddo
enddo
end if
!! <phi|H|alpha>
tmp_rowji = 0.d0
do putj=1, hfix-1
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hji = hji_cache(putj,1) - hji_cache(putj,2)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
enddo
endif
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma)) cycle
if(banned(putj, puti,bant)) cycle
hji = hji_cache(putj,2) - hji_cache(putj,1)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowji(k,putj) = tmp_rowji(k,putj) + hji * coefs(k,1)
enddo
endif
end do
if(ma == 1) then
mat_l(1:N_states,1:mo_num,puti) = mat_l(1:N_states,1:mo_num,puti) + tmp_rowji(1:N_states,1:mo_num)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_l(k,puti,l) = mat_l(k,puti,l) + tmp_rowji(k,l)
enddo
enddo
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_rowij = 0.d0
tmp_rowij2 = 0.d0
tmp_rowji = 0.d0
tmp_rowji2 = 0.d0
! call get_mo_two_e_integrals_complex(hfix,pfix,p1,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p1)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,pfix,p2)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(pfix,p1,mm,hfix)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(pfix,p2,mm,hfix)
enddo
putj = p1
!! <alpha|H|psi>
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
enddo
endif
end if
!
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
enddo
endif
end if
end do
if(mi == 1) then
mat_r(:,:,p1) = mat_r(:,:,p1) + tmp_rowij(:,:)
mat_r(:,:,p2) = mat_r(:,:,p2) + tmp_rowij2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij(k,l)
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij2(k,l)
enddo
enddo
end if
putj = p1
!! <phi|H|alpha>
do puti=1,mo_num !HOT
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hji = hji_cache(puti,2)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
enddo
endif
end if
!
putj = p2
if(.not. banned(putj,puti,bant)) then
hji = hji_cache(puti,1)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
do k=1,N_states
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
enddo
endif
end if
end do
if(mi == 1) then
mat_l(:,:,p1) = mat_l(:,:,p1) + tmp_rowji(:,:)
mat_l(:,:,p2) = mat_l(:,:,p2) + tmp_rowji2(:,:)
else
do l=1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji(k,l)
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji2(k,l)
enddo
enddo
end if
else ! sp /= 3
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
! call get_mo_two_e_integrals_complex(hfix,p1,p2,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,p1,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,p2)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,p1)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,p2,mm,hfix)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,p1,mm,hfix)
enddo
!! <alpha|H|psi>
tmp_rowij = 0.d0
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,1) - hij_cache(putj,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hij = hij_cache(putj,2) - hij_cache(putj,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_rowij(:,putj) = tmp_rowij(:,putj) + hij * coefs(:,2)
endif
end do
mat_r(:, :puti-1, puti) = mat_r(:, :puti-1, puti) + tmp_rowij(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k, puti, l) = mat_r(k, puti,l) + tmp_rowij(k,l)
enddo
enddo
!! <phi|H|alpha>
tmp_rowji = 0.d0
do putj=1,hfix-1
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hji = hji_cache(putj,1) - hji_cache(putj,2)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
endif
end do
do putj=hfix+1,mo_num
if(banned(putj,puti,1)) cycle
if(lbanned(putj,ma)) cycle
hji = hji_cache(putj,2) - hji_cache(putj,1)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_rowji(:,putj) = tmp_rowji(:,putj) + hji * coefs(:,1)
endif
end do
mat_l(:, :puti-1, puti) = mat_l(:, :puti-1, puti) + tmp_rowji(:,:puti-1)
do l=puti,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_l(k, puti, l) = mat_l(k, puti,l) + tmp_rowji(k,l)
enddo
enddo
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_rowij = 0.d0
tmp_rowij2 = 0.d0
tmp_rowji = 0.d0
tmp_rowji2 = 0.d0
! call get_mo_two_e_integrals_complex(hfix,p1,pfix,mo_num,hij_cache(1,1),mo_integrals_map,mo_integrals_map_2)
! call get_mo_two_e_integrals_complex(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map,mo_integrals_map_2)
do mm = 1, mo_num
hij_cache(mm,1) = mo_bi_ortho_tc_two_e(mm,hfix,p1,pfix)
hij_cache(mm,2) = mo_bi_ortho_tc_two_e(mm,hfix,p2,pfix)
hji_cache(mm,1) = mo_bi_ortho_tc_two_e(p1,pfix,mm,hfix)
hji_cache(mm,2) = mo_bi_ortho_tc_two_e(p2,pfix,mm,hfix)
enddo
putj = p2
!! <alpha|H|psi>
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowij(k,puti) = tmp_rowij(k,puti) + hij * coefs(k,2)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_rowij2(k,puti) = tmp_rowij2(k,puti) + hij * coefs(k,2)
enddo
endif
end if
end do
mat_r(:,:p2-1,p2) = mat_r(:,:p2-1,p2) + tmp_rowij(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p2,l) = mat_r(k,p2,l) + tmp_rowij(k,l)
enddo
enddo
mat_r(:,:p1-1,p1) = mat_r(:,:p1-1,p1) + tmp_rowij2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_r(k,p1,l) = mat_r(k,p1,l) + tmp_rowij2(k,l)
enddo
enddo
!! <phi|H|alpha>
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hji = hji_cache(puti,1)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
tmp_rowji(k,puti) = tmp_rowji(k,puti) + hji * coefs(k,1)
enddo
endif
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hji = hji_cache(puti,2)
if (hji /= 0.d0) then
hji = hji * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
do k=1,N_states
tmp_rowji2(k,puti) = tmp_rowji2(k,puti) + hji * coefs(k,1)
enddo
endif
end if
end do
mat_l(:,:p2-1,p2) = mat_l(:,:p2-1,p2) + tmp_rowji(:,:p2-1)
do l=p2,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_l(k,p2,l) = mat_l(k,p2,l) + tmp_rowji(k,l)
enddo
enddo
mat_l(:,:p1-1,p1) = mat_l(:,:p1-1,p1) + tmp_rowji2(:,:p1-1)
do l=p1,mo_num
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
mat_l(k,p1,l) = mat_l(k,p1,l) + tmp_rowji2(k,l)
enddo
enddo
end if
end if
deallocate(lbanned,hij_cache, hji_cache)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
! gen is a selector; mask is ionized generator; det is alpha
! hij is contribution to <psi|H|alpha>
! call i_h_j_complex(gen, det, N_int, hij)
call htilde_mu_mat_opt_bi_ortho_no_3e(det, gen, N_int, hij)
call htilde_mu_mat_opt_bi_ortho_no_3e(gen, det, N_int, hji)
!DIR$ LOOP COUNT AVG(4)
do k=1,N_states
! take conjugate to get contribution to <alpha|H|psi> instead of <psi|H|alpha>
! mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,1) * dconjg(hij)
mat_r(k, p1, p2) = mat_r(k, p1, p2) + coefs(k,2) * hij
mat_l(k, p1, p2) = mat_l(k, p1, p2) + coefs(k,1) * hji
enddo
end do
end do
end