10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-01 00:55:50 +01:00
QuantumPackage/plugins/local/tc_bi_ortho/tc_prop.irp.f

161 lines
5.4 KiB
Fortran

BEGIN_PROVIDER [ double precision, tc_transition_matrix_mo_beta, (mo_num, mo_num,N_states,N_states) ]
&BEGIN_PROVIDER [ double precision, tc_transition_matrix_mo_alpha, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix_mo_alpha(p,h,istate,jstate) = <Chi_istate| a^\dagger_p,alpha a_h,alpha |Phi_jstate>
!
! tc_transition_matrix_mo_beta(p,h,istate,jstate) = <Chi_istate| a^\dagger_p,beta a_h,beta |Phi_jstate>
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
integer :: i,j,istate,jstate,m,n,p,h
double precision :: phase
integer, allocatable :: occ(:,:)
integer :: n_occ_ab(2),degree,exc(0:2,2,2)
allocate(occ(N_int*bit_kind_size,2))
tc_transition_matrix_mo_alpha = 0.d0
tc_transition_matrix_mo_beta = 0.d0
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree.gt.1)cycle
do istate = 1, N_states
do jstate = 1, N_states
if (degree == 0)then
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
do p = 1, n_occ_ab(1) ! browsing the alpha electrons
m = occ(p,1)
tc_transition_matrix_mo_alpha(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
enddo
do p = 1, n_occ_ab(2) ! browsing the beta electrons
m = occ(p,2)
tc_transition_matrix_mo_beta(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
enddo
else
call get_single_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Single alpha
h = exc(1,1,1) ! hole in psi_det(1,1,j)
p = exc(1,2,1) ! particle in psi_det(1,1,j)
tc_transition_matrix_mo_alpha(p,h,istate,jstate)+= &
phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
else
! Single beta
h = exc(1,1,2) ! hole in psi_det(1,1,j)
p = exc(1,2,2) ! particle in psi_det(1,1,j)
tc_transition_matrix_mo_beta(p,h,istate,jstate)+= &
phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
endif
endif
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_transition_matrix_mo, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix_mo(p,h,istate,jstate) = \sum_{sigma=alpha,beta} <Chi_istate| a^\dagger_p,sigma a_h,sigma |Phi_jstate>
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
tc_transition_matrix_mo = tc_transition_matrix_mo_beta + tc_transition_matrix_mo_alpha
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_spin_transition_matrix_mo, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_spin_transition_matrix_mo = tc_transition_matrix_mo_alpha - tc_transition_matrix_mo_beta
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
tc_spin_transition_matrix_mo = tc_transition_matrix_mo_alpha - tc_transition_matrix_mo_beta
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_bi_ortho_dipole, (3,N_states)]
implicit none
integer :: i,j,istate,m
double precision :: nuclei_part(3)
tc_bi_ortho_dipole = 0.d0
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
tc_bi_ortho_dipole(1,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_x(j,i)
tc_bi_ortho_dipole(2,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_y(j,i)
tc_bi_ortho_dipole(3,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_z(j,i)
enddo
enddo
enddo
print*,'tc_bi_ortho_dipole(3) elec = ',tc_bi_ortho_dipole(3,1)
nuclei_part = 0.d0
do m = 1, 3
do i = 1,nucl_num
nuclei_part(m) += nucl_charge(i) * nucl_coord(i,m)
enddo
enddo
!
do istate = 1, N_states
do m = 1, 3
tc_bi_ortho_dipole(m,istate) += nuclei_part(m)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, tc_transition_matrix_ao, (ao_num, ao_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix(p,h,istate,jstate) in the AO basis
END_DOC
integer :: i,j,k,l
double precision :: dm_mo
tc_transition_matrix_ao = 0.d0
integer :: istate,jstate
do istate = 1, N_states
do jstate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
dm_mo = tc_transition_matrix_mo(j,i,jstate,istate)
do k = 1, ao_num
do l = 1, ao_num
tc_transition_matrix_ao(l,k,jstate,istate) += mo_l_coef(l,j) * mo_r_coef(k,i) * dm_mo
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, tc_spin_transition_matrix_ao, (ao_num, ao_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_spin_transition_matrix_ao(p,h,istate,jstate) in the AO basis
END_DOC
integer :: i,j,k,l
double precision :: dm_mo
tc_spin_transition_matrix_ao = 0.d0
integer :: istate,jstate
do istate = 1, N_states
do jstate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
dm_mo = tc_spin_transition_matrix_mo(j,i,jstate,istate)
do k = 1, ao_num
do l = 1, ao_num
tc_spin_transition_matrix_ao(l,k,jstate,istate) += mo_l_coef(l,j) * mo_r_coef(k,i) * dm_mo
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER