mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-15 02:23:51 +01:00
791 lines
22 KiB
Fortran
791 lines
22 KiB
Fortran
use map_module
|
|
|
|
!! AO Map
|
|
!! ======
|
|
|
|
BEGIN_PROVIDER [ type(map_type), ao_integrals_map ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! AO integrals
|
|
END_DOC
|
|
integer(key_kind) :: key_max
|
|
integer(map_size_kind) :: sze
|
|
call two_e_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max)
|
|
sze = key_max
|
|
call map_init(ao_integrals_map,sze)
|
|
print*, 'AO map initialized : ', sze
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ type(map_type), ao_integrals_map_periodic ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! AO integrals
|
|
END_DOC
|
|
integer(key_kind) :: key_max
|
|
integer(map_size_kind) :: sze
|
|
call two_e_integrals_index_2fold(ao_num,ao_num,ao_num,ao_num,key_max)
|
|
sze = key_max
|
|
call map_init(ao_integrals_map_periodic,sze)
|
|
print*, 'complex AO map initialized : ', sze
|
|
END_PROVIDER
|
|
|
|
subroutine two_e_integrals_index(i,j,k,l,i1)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gives a unique index for i,j,k,l using permtuation symmetry.
|
|
! i <-> k, j <-> l, and (i,k) <-> (j,l) for non-periodic systems
|
|
END_DOC
|
|
integer, intent(in) :: i,j,k,l
|
|
integer(key_kind), intent(out) :: i1
|
|
integer(key_kind) :: p,q,r,s,i2
|
|
p = min(i,k)
|
|
r = max(i,k)
|
|
p = p+shiftr(r*r-r,1)
|
|
q = min(j,l)
|
|
s = max(j,l)
|
|
q = q+shiftr(s*s-s,1)
|
|
i1 = min(p,q)
|
|
i2 = max(p,q)
|
|
i1 = i1+shiftr(i2*i2-i2,1)
|
|
end
|
|
|
|
|
|
|
|
subroutine two_e_integrals_index_reverse(i,j,k,l,i1)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
|
|
! For 2 indices $i,j$ and $i \le j$, we have
|
|
! $p = i(i-1)/2 + j$.
|
|
! The key point is that because $j < i$,
|
|
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
|
|
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
|
|
! and $j = p - i(i-1)/2$.
|
|
! This rule is applied 3 times. First for the symmetry of the
|
|
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
|
|
END_DOC
|
|
integer, intent(out) :: i(8),j(8),k(8),l(8)
|
|
integer(key_kind), intent(in) :: i1
|
|
integer(key_kind) :: i2,i3
|
|
i = 0
|
|
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
|
|
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
|
|
i3 = i1 - shiftr(i2*i2-i2,1)
|
|
k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
|
|
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
|
|
i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4)
|
|
|
|
!ijkl
|
|
i(2) = i(1) !ilkj
|
|
j(2) = l(1)
|
|
k(2) = k(1)
|
|
l(2) = j(1)
|
|
|
|
i(3) = k(1) !kjil
|
|
j(3) = j(1)
|
|
k(3) = i(1)
|
|
l(3) = l(1)
|
|
|
|
i(4) = k(1) !klij
|
|
j(4) = l(1)
|
|
k(4) = i(1)
|
|
l(4) = j(1)
|
|
|
|
i(5) = j(1) !jilk
|
|
j(5) = i(1)
|
|
k(5) = l(1)
|
|
l(5) = k(1)
|
|
|
|
i(6) = j(1) !jkli
|
|
j(6) = k(1)
|
|
k(6) = l(1)
|
|
l(6) = i(1)
|
|
|
|
i(7) = l(1) !lijk
|
|
j(7) = i(1)
|
|
k(7) = j(1)
|
|
l(7) = k(1)
|
|
|
|
i(8) = l(1) !lkji
|
|
j(8) = k(1)
|
|
k(8) = j(1)
|
|
l(8) = i(1)
|
|
|
|
integer :: ii, jj
|
|
do ii=2,8
|
|
do jj=1,ii-1
|
|
if ( (i(ii) == i(jj)).and. &
|
|
(j(ii) == j(jj)).and. &
|
|
(k(ii) == k(jj)).and. &
|
|
(l(ii) == l(jj)) ) then
|
|
i(ii) = 0
|
|
exit
|
|
endif
|
|
enddo
|
|
enddo
|
|
! This has been tested with up to 1000 AOs, and all the reverse indices are
|
|
! correct ! We can remove the test
|
|
! do ii=1,8
|
|
! if (i(ii) /= 0) then
|
|
! call two_e_integrals_index(i(ii),j(ii),k(ii),l(ii),i2)
|
|
! if (i1 /= i2) then
|
|
! print *, i1, i2
|
|
! print *, i(ii), j(ii), k(ii), l(ii)
|
|
! stop 'two_e_integrals_index_reverse failed'
|
|
! endif
|
|
! endif
|
|
! enddo
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
subroutine ao_idx2_sq(i,j,ij)
|
|
implicit none
|
|
integer, intent(in) :: i,j
|
|
integer, intent(out) :: ij
|
|
if (i<j) then
|
|
ij=(j-1)*(j-1)+2*i-mod(j+1,2)
|
|
else if (i>j) then
|
|
ij=(i-1)*(i-1)+2*j-mod(i,2)
|
|
else
|
|
ij=i*i
|
|
endif
|
|
end
|
|
|
|
subroutine idx2_tri_int(i,j,ij)
|
|
implicit none
|
|
integer, intent(in) :: i,j
|
|
integer, intent(out) :: ij
|
|
integer :: p,q
|
|
p = max(i,j)
|
|
q = min(i,j)
|
|
ij = q+ishft(p*p-p,-1)
|
|
end
|
|
|
|
subroutine ao_idx2_tri_key(i,j,ij)
|
|
use map_module
|
|
implicit none
|
|
integer, intent(in) :: i,j
|
|
integer(key_kind), intent(out) :: ij
|
|
integer(key_kind) :: p,q
|
|
p = max(i,j)
|
|
q = min(i,j)
|
|
ij = q+ishft(p*p-p,-1)
|
|
end
|
|
|
|
subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
|
|
use map_module
|
|
implicit none
|
|
integer, intent(in) :: i,j,k,l
|
|
integer(key_kind), intent(out) :: i1
|
|
integer :: ik,jl
|
|
|
|
call ao_idx2_sq(i,k,ik)
|
|
call ao_idx2_sq(j,l,jl)
|
|
call ao_idx2_tri_key(ik,jl,i1)
|
|
end
|
|
|
|
subroutine ao_idx2_sq_rev(i,k,ik)
|
|
BEGIN_DOC
|
|
! reverse square compound index
|
|
END_DOC
|
|
! p = ceiling(dsqrt(dble(ik)))
|
|
! q = ceiling(0.5d0*(dble(ik)-dble((p-1)*(p-1))))
|
|
! if (mod(ik,2)==0) then
|
|
! k=p
|
|
! i=q
|
|
! else
|
|
! i=p
|
|
! k=q
|
|
! endif
|
|
integer, intent(in) :: ik
|
|
integer, intent(out) :: i,k
|
|
integer :: pq(0:1),i1,i2
|
|
pq(0) = ceiling(dsqrt(dble(ik)))
|
|
pq(1) = ceiling(0.5d0*(dble(ik)-dble((pq(0)-1)*(pq(0)-1))))
|
|
i1=mod(ik,2)
|
|
i2=mod(ik+1,2)
|
|
|
|
k=pq(i1)
|
|
i=pq(i2)
|
|
end
|
|
|
|
subroutine ao_idx2_tri_rev_key(i,k,ik)
|
|
use map_module
|
|
BEGIN_DOC
|
|
!return i<=k
|
|
END_DOC
|
|
integer(key_kind), intent(in) :: ik
|
|
integer, intent(out) :: i,k
|
|
integer(key_kind) :: tmp_k
|
|
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
|
|
tmp_k = k
|
|
i = int(ik - ishft(tmp_k*tmp_k-tmp_k,-1))
|
|
end
|
|
|
|
subroutine idx2_tri_rev_int(i,k,ik)
|
|
BEGIN_DOC
|
|
!return i<=k
|
|
END_DOC
|
|
integer, intent(in) :: ik
|
|
integer, intent(out) :: i,k
|
|
k = ceiling(0.5d0*(dsqrt(8.d0*dble(ik)+1.d0)-1.d0))
|
|
i = int(ik - ishft(k*k-k,-1))
|
|
end
|
|
|
|
subroutine two_e_integrals_index_reverse_2fold(i,j,k,l,i1)
|
|
use map_module
|
|
implicit none
|
|
integer, intent(out) :: i(2),j(2),k(2),l(2)
|
|
integer(key_kind), intent(in) :: i1
|
|
integer(key_kind) :: i0
|
|
integer :: i2,i3
|
|
i = 0
|
|
call ao_idx2_tri_rev_key(i3,i2,i1)
|
|
|
|
call ao_idx2_sq_rev(j(1),l(1),i2)
|
|
call ao_idx2_sq_rev(i(1),k(1),i3)
|
|
|
|
!ijkl
|
|
i(2) = j(1) !jilk
|
|
j(2) = i(1)
|
|
k(2) = l(1)
|
|
l(2) = k(1)
|
|
|
|
! i(3) = k(1) !klij complex conjugate
|
|
! j(3) = l(1)
|
|
! k(3) = i(1)
|
|
! l(3) = j(1)
|
|
!
|
|
! i(4) = l(1) !lkji complex conjugate
|
|
! j(4) = k(1)
|
|
! k(4) = j(1)
|
|
! l(4) = i(1)
|
|
|
|
integer :: ii
|
|
if ( (i(1)==i(2)).and. &
|
|
(j(1)==j(2)).and. &
|
|
(k(1)==k(2)).and. &
|
|
(l(1)==l(2)) ) then
|
|
i(2) = 0
|
|
endif
|
|
! This has been tested with up to 1000 AOs, and all the reverse indices are
|
|
! correct ! We can remove the test
|
|
! do ii=1,2
|
|
! if (i(ii) /= 0) then
|
|
! call two_e_integrals_index_2fold(i(ii),j(ii),k(ii),l(ii),i0)
|
|
! if (i1 /= i0) then
|
|
! print *, i1, i0
|
|
! print *, i(ii), j(ii), k(ii), l(ii)
|
|
! stop 'two_e_integrals_index_reverse_2fold failed'
|
|
! endif
|
|
! endif
|
|
! enddo
|
|
end
|
|
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ integer, ao_integrals_cache_min ]
|
|
&BEGIN_PROVIDER [ integer, ao_integrals_cache_max ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Min and max values of the AOs for which the integrals are in the cache
|
|
END_DOC
|
|
ao_integrals_cache_min = max(1,ao_num - 63)
|
|
ao_integrals_cache_max = ao_num
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Cache of AO integrals for fast access
|
|
END_DOC
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
integer :: i,j,k,l,ii
|
|
integer(key_kind) :: idx, idx2
|
|
real(integral_kind) :: integral
|
|
real(integral_kind) :: tmp_re, tmp_im
|
|
integer(key_kind) :: idx_re,idx_im
|
|
|
|
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
|
do l=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do k=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do j=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do i=ao_integrals_cache_min,ao_integrals_cache_max
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index(i,j,k,l,idx)
|
|
!DIR$ FORCEINLINE
|
|
call map_get(ao_integrals_map,idx,integral)
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
|
ao_integrals_cache(ii) = integral
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
END_PROVIDER
|
|
|
|
|
|
double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gets one AO bi-electronic integral from the AO map
|
|
END_DOC
|
|
integer, intent(in) :: i,j,k,l
|
|
integer(key_kind) :: idx
|
|
type(map_type), intent(inout) :: map
|
|
integer :: ii
|
|
real(integral_kind) :: tmp
|
|
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache ao_integrals_cache_min
|
|
!DIR$ FORCEINLINE
|
|
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
|
tmp = 0.d0
|
|
else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
|
tmp = 0.d0
|
|
else
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior(ii, k-ao_integrals_cache_min)
|
|
ii = ior(ii, j-ao_integrals_cache_min)
|
|
ii = ior(ii, i-ao_integrals_cache_min)
|
|
if (iand(ii, -64) /= 0) then
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index(i,j,k,l,idx)
|
|
!DIR$ FORCEINLINE
|
|
call map_get(map,idx,tmp)
|
|
else
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
|
tmp = ao_integrals_cache(ii)
|
|
endif
|
|
endif
|
|
result = tmp
|
|
end
|
|
|
|
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Cache of AO integrals for fast access
|
|
END_DOC
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
integer :: i,j,k,l,ii
|
|
integer(key_kind) :: idx1, idx2
|
|
real(integral_kind) :: tmp_re, tmp_im
|
|
integer(key_kind) :: idx_re,idx_im
|
|
complex(integral_kind) :: integral
|
|
|
|
|
|
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
|
|
do l=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do k=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do j=ao_integrals_cache_min,ao_integrals_cache_max
|
|
do i=ao_integrals_cache_min,ao_integrals_cache_max
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index_2fold(i,j,k,l,idx1)
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index_2fold(k,l,i,j,idx2)
|
|
idx_re = min(idx1,idx2)
|
|
idx_im = max(idx1,idx2)
|
|
!DIR$ FORCEINLINE
|
|
call map_get(ao_integrals_map,idx_re,tmp_re)
|
|
if (idx_re /= idx_im) then
|
|
call map_get(ao_integrals_map,idx_im,tmp_im)
|
|
if (idx1 < idx2) then
|
|
integral = dcmplx(tmp_re,tmp_im)
|
|
else
|
|
integral = dcmplx(tmp_re,-tmp_im)
|
|
endif
|
|
else
|
|
tmp_im = 0.d0
|
|
integral = dcmplx(tmp_re,tmp_im)
|
|
endif
|
|
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
|
ao_integrals_cache_periodic(ii) = integral
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gets one AO bi-electronic integral from the AO map
|
|
END_DOC
|
|
integer, intent(in) :: i,j,k,l
|
|
integer(key_kind) :: idx1,idx2
|
|
real(integral_kind) :: tmp_re, tmp_im
|
|
integer(key_kind) :: idx_re,idx_im
|
|
type(map_type), intent(inout) :: map
|
|
integer :: ii
|
|
complex(integral_kind) :: tmp
|
|
PROVIDE ao_two_e_integrals_in_map_periodic ao_integrals_cache_periodic ao_integrals_cache_min
|
|
!DIR$ FORCEINLINE
|
|
if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
|
|
tmp = (0.d0,0.d0)
|
|
else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
|
|
tmp = (0.d0,0.d0)
|
|
else
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior(ii, k-ao_integrals_cache_min)
|
|
ii = ior(ii, j-ao_integrals_cache_min)
|
|
ii = ior(ii, i-ao_integrals_cache_min)
|
|
if (iand(ii, -64) /= 0) then
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index_2fold(i,j,k,l,idx1)
|
|
!DIR$ FORCEINLINE
|
|
call two_e_integrals_index_2fold(k,l,i,j,idx2)
|
|
idx_re = min(idx1,idx2)
|
|
idx_im = max(idx1,idx2)
|
|
!DIR$ FORCEINLINE
|
|
call map_get(ao_integrals_map,idx_re,tmp_re)
|
|
if (idx_re /= idx_im) then
|
|
call map_get(ao_integrals_map,idx_im,tmp_im)
|
|
if (idx1 < idx2) then
|
|
tmp = dcmplx(tmp_re,tmp_im)
|
|
else
|
|
tmp = dcmplx(tmp_re,-tmp_im)
|
|
endif
|
|
else
|
|
tmp_im = 0.d0
|
|
tmp = dcmplx(tmp_re,tmp_im)
|
|
endif
|
|
else
|
|
ii = l-ao_integrals_cache_min
|
|
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
|
|
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
|
|
tmp = ao_integrals_cache_periodic(ii)
|
|
endif
|
|
result = tmp
|
|
endif
|
|
end
|
|
|
|
|
|
subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
|
|
use map_module
|
|
BEGIN_DOC
|
|
! Gets multiple AO bi-electronic integral from the AO map .
|
|
! All i are retrieved for j,k,l fixed.
|
|
! physicist convention : <ij|kl>
|
|
END_DOC
|
|
implicit none
|
|
integer, intent(in) :: j,k,l, sze
|
|
real(integral_kind), intent(out) :: out_val(sze)
|
|
|
|
integer :: i
|
|
integer(key_kind) :: hash
|
|
double precision :: thresh
|
|
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
|
thresh = ao_integrals_threshold
|
|
|
|
if (ao_overlap_abs(j,l) < thresh) then
|
|
out_val = 0.d0
|
|
return
|
|
endif
|
|
|
|
double precision :: get_ao_two_e_integral
|
|
do i=1,sze
|
|
out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map)
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
|
|
use map_module
|
|
BEGIN_DOC
|
|
! Gets multiple AO bi-electronic integral from the AO map .
|
|
! All i are retrieved for j,k,l fixed.
|
|
! physicist convention : <ij|kl>
|
|
END_DOC
|
|
implicit none
|
|
integer, intent(in) :: j,k,l, sze
|
|
complex*16, intent(out) :: out_val(sze)
|
|
|
|
integer :: i
|
|
integer(key_kind) :: hash
|
|
double precision :: thresh
|
|
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
|
|
thresh = ao_integrals_threshold
|
|
|
|
if (ao_overlap_abs_periodic(j,l) < thresh) then
|
|
out_val = (0.d0,0.d0)
|
|
return
|
|
endif
|
|
|
|
complex*16 :: get_ao_two_e_integral_periodic
|
|
do i=1,sze
|
|
out_val(i) = get_ao_two_e_integral_periodic(i,j,k,l,ao_integrals_map)
|
|
enddo
|
|
|
|
end
|
|
|
|
subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gets multiple AO bi-electronic integral from the AO map .
|
|
! All non-zero i are retrieved for j,k,l fixed.
|
|
END_DOC
|
|
integer, intent(in) :: j,k,l, sze
|
|
real(integral_kind), intent(out) :: out_val(sze)
|
|
integer, intent(out) :: out_val_index(sze),non_zero_int
|
|
|
|
integer :: i
|
|
integer(key_kind) :: hash
|
|
double precision :: thresh,tmp
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
thresh = ao_integrals_threshold
|
|
|
|
non_zero_int = 0
|
|
if (ao_overlap_abs(j,l) < thresh) then
|
|
out_val = 0.d0
|
|
return
|
|
endif
|
|
|
|
non_zero_int = 0
|
|
do i=1,sze
|
|
integer, external :: ao_l4
|
|
double precision, external :: ao_two_e_integral
|
|
!DIR$ FORCEINLINE
|
|
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
|
cycle
|
|
endif
|
|
call two_e_integrals_index(i,j,k,l,hash)
|
|
call map_get(ao_integrals_map, hash,tmp)
|
|
if (dabs(tmp) < thresh ) cycle
|
|
non_zero_int = non_zero_int+1
|
|
out_val_index(non_zero_int) = i
|
|
out_val(non_zero_int) = tmp
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gets multiple AO bi-electronic integral from the AO map .
|
|
! All non-zero i are retrieved for j,k,l fixed.
|
|
END_DOC
|
|
double precision, intent(in) :: thresh
|
|
integer, intent(in) :: j,l, sze,sze_max
|
|
real(integral_kind), intent(out) :: out_val(sze_max)
|
|
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
|
|
|
integer :: i,k
|
|
integer(key_kind) :: hash
|
|
double precision :: tmp
|
|
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
non_zero_int = 0
|
|
if (ao_overlap_abs(j,l) < thresh) then
|
|
out_val = 0.d0
|
|
return
|
|
endif
|
|
|
|
non_zero_int = 0
|
|
do k = 1, sze
|
|
do i = 1, sze
|
|
integer, external :: ao_l4
|
|
double precision, external :: ao_two_e_integral
|
|
!DIR$ FORCEINLINE
|
|
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
|
cycle
|
|
endif
|
|
call two_e_integrals_index(i,j,k,l,hash)
|
|
call map_get(ao_integrals_map, hash,tmp)
|
|
if (dabs(tmp) < thresh ) cycle
|
|
non_zero_int = non_zero_int+1
|
|
out_val_index(1,non_zero_int) = i
|
|
out_val_index(2,non_zero_int) = k
|
|
out_val(non_zero_int) = tmp
|
|
enddo
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Gets multiple AO two-electron integrals from the AO map .
|
|
! All non-zero i are retrieved for j,k,l fixed.
|
|
END_DOC
|
|
double precision, intent(in) :: thresh
|
|
integer, intent(in) :: sze_max
|
|
integer, intent(in) :: j,l, n_list,list(2,sze_max)
|
|
real(integral_kind), intent(out) :: out_val(sze_max)
|
|
integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
|
|
|
|
integer :: i,k
|
|
integer(key_kind) :: hash
|
|
double precision :: tmp
|
|
|
|
PROVIDE ao_two_e_integrals_in_map
|
|
non_zero_int = 0
|
|
if (ao_overlap_abs(j,l) < thresh) then
|
|
out_val = 0.d0
|
|
return
|
|
endif
|
|
|
|
non_zero_int = 0
|
|
integer :: kk
|
|
do kk = 1, n_list
|
|
k = list(1,kk)
|
|
i = list(2,kk)
|
|
integer, external :: ao_l4
|
|
double precision, external :: ao_two_e_integral
|
|
!DIR$ FORCEINLINE
|
|
if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
|
|
cycle
|
|
endif
|
|
call two_e_integrals_index(i,j,k,l,hash)
|
|
call map_get(ao_integrals_map, hash,tmp)
|
|
if (dabs(tmp) < thresh ) cycle
|
|
non_zero_int = non_zero_int+1
|
|
out_val_index(1,non_zero_int) = i
|
|
out_val_index(2,non_zero_int) = k
|
|
out_val(non_zero_int) = tmp
|
|
enddo
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function get_ao_map_size()
|
|
implicit none
|
|
integer (map_size_kind) :: get_ao_map_size
|
|
BEGIN_DOC
|
|
! Returns the number of elements in the AO map
|
|
END_DOC
|
|
get_ao_map_size = ao_integrals_map % n_elements
|
|
end
|
|
|
|
subroutine clear_ao_map
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Frees the memory of the AO map
|
|
END_DOC
|
|
call map_deinit(ao_integrals_map)
|
|
FREE ao_integrals_map
|
|
end
|
|
|
|
|
|
subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values)
|
|
use map_module
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Create new entry into AO map
|
|
END_DOC
|
|
|
|
integer, intent(in) :: n_integrals
|
|
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
|
|
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
|
|
|
call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals)
|
|
end
|
|
|
|
|
|
!subroutine dump_ao_integrals(filename)
|
|
! use map_module
|
|
! implicit none
|
|
! BEGIN_DOC
|
|
! ! Save to disk the |AO| integrals
|
|
! END_DOC
|
|
! character*(*), intent(in) :: filename
|
|
! integer(cache_key_kind), pointer :: key(:)
|
|
! real(integral_kind), pointer :: val(:)
|
|
! integer*8 :: i,j, n
|
|
! if (.not.mpi_master) then
|
|
! return
|
|
! endif
|
|
! call ezfio_set_work_empty(.False.)
|
|
! open(unit=66,file=filename,FORM='unformatted')
|
|
! write(66) integral_kind, key_kind
|
|
! write(66) ao_integrals_map%sorted, ao_integrals_map%map_size, &
|
|
! ao_integrals_map%n_elements
|
|
! do i=0_8,ao_integrals_map%map_size
|
|
! write(66) ao_integrals_map%map(i)%sorted, ao_integrals_map%map(i)%map_size,&
|
|
! ao_integrals_map%map(i)%n_elements
|
|
! enddo
|
|
! do i=0_8,ao_integrals_map%map_size
|
|
! key => ao_integrals_map%map(i)%key
|
|
! val => ao_integrals_map%map(i)%value
|
|
! n = ao_integrals_map%map(i)%n_elements
|
|
! write(66) (key(j), j=1,n), (val(j), j=1,n)
|
|
! enddo
|
|
! close(66)
|
|
!
|
|
!end
|
|
|
|
|
|
!integer function load_ao_integrals(filename)
|
|
! implicit none
|
|
! BEGIN_DOC
|
|
! ! Read from disk the |AO| integrals
|
|
! END_DOC
|
|
! character*(*), intent(in) :: filename
|
|
! integer*8 :: i
|
|
! integer(cache_key_kind), pointer :: key(:)
|
|
! real(integral_kind), pointer :: val(:)
|
|
! integer :: iknd, kknd
|
|
! integer*8 :: n, j
|
|
! load_ao_integrals = 1
|
|
! open(unit=66,file=filename,FORM='unformatted',STATUS='UNKNOWN')
|
|
! read(66,err=98,end=98) iknd, kknd
|
|
! if (iknd /= integral_kind) then
|
|
! print *, 'Wrong integrals kind in file :', iknd
|
|
! stop 1
|
|
! endif
|
|
! if (kknd /= key_kind) then
|
|
! print *, 'Wrong key kind in file :', kknd
|
|
! stop 1
|
|
! endif
|
|
! read(66,err=98,end=98) ao_integrals_map%sorted, ao_integrals_map%map_size,&
|
|
! ao_integrals_map%n_elements
|
|
! do i=0_8, ao_integrals_map%map_size
|
|
! read(66,err=99,end=99) ao_integrals_map%map(i)%sorted, &
|
|
! ao_integrals_map%map(i)%map_size, ao_integrals_map%map(i)%n_elements
|
|
! call cache_map_reallocate(ao_integrals_map%map(i),ao_integrals_map%map(i)%map_size)
|
|
! enddo
|
|
! do i=0_8, ao_integrals_map%map_size
|
|
! key => ao_integrals_map%map(i)%key
|
|
! val => ao_integrals_map%map(i)%value
|
|
! n = ao_integrals_map%map(i)%n_elements
|
|
! read(66,err=99,end=99) (key(j), j=1,n), (val(j), j=1,n)
|
|
! enddo
|
|
! call map_sort(ao_integrals_map)
|
|
! load_ao_integrals = 0
|
|
! return
|
|
! 99 continue
|
|
! call map_deinit(ao_integrals_map)
|
|
! 98 continue
|
|
! stop 'Problem reading ao_integrals_map file in work/'
|
|
!
|
|
!end
|
|
!
|