mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-14 18:13:51 +01:00
188 lines
5.7 KiB
Fortran
188 lines
5.7 KiB
Fortran
BEGIN_PROVIDER [ double precision, Fock_matrix_mo, (mo_num,mo_num) ]
|
|
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo, (mo_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis.
|
|
! For open shells, the ROHF Fock Matrix is ::
|
|
!
|
|
! | F-K | F + K/2 | F |
|
|
! |---------------------------------|
|
|
! | F + K/2 | F | F - K/2 |
|
|
! |---------------------------------|
|
|
! | F | F - K/2 | F + K |
|
|
!
|
|
!
|
|
! F = 1/2 (Fa + Fb)
|
|
!
|
|
! K = Fb - Fa
|
|
!
|
|
END_DOC
|
|
integer :: i,j,n
|
|
if (elec_alpha_num == elec_beta_num) then
|
|
Fock_matrix_mo = Fock_matrix_mo_alpha
|
|
else
|
|
|
|
do j=1,elec_beta_num
|
|
! F-K
|
|
do i=1,elec_beta_num !CC
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
- (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
! F+K/2
|
|
do i=elec_beta_num+1,elec_alpha_num !CA
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
! F
|
|
do i=elec_alpha_num+1, mo_num !CV
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
enddo
|
|
enddo
|
|
|
|
do j=elec_beta_num+1,elec_alpha_num
|
|
! F+K/2
|
|
do i=1,elec_beta_num !AC
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
+ 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
! F
|
|
do i=elec_beta_num+1,elec_alpha_num !AA
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
enddo
|
|
! F-K/2
|
|
do i=elec_alpha_num+1, mo_num !AV
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
enddo
|
|
|
|
do j=elec_alpha_num+1, mo_num
|
|
! F
|
|
do i=1,elec_beta_num !VC
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
enddo
|
|
! F-K/2
|
|
do i=elec_beta_num+1,elec_alpha_num !VA
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
- 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
! F+K
|
|
do i=elec_alpha_num+1,mo_num !VV
|
|
Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
|
|
+ (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
do i = 1, mo_num
|
|
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
|
|
enddo
|
|
|
|
|
|
if(frozen_orb_scf)then
|
|
integer :: iorb,jorb
|
|
do i = 1, n_core_orb
|
|
iorb = list_core(i)
|
|
do j = 1, n_act_orb
|
|
jorb = list_act(j)
|
|
Fock_matrix_mo(iorb,jorb) = 0.d0
|
|
Fock_matrix_mo(jorb,iorb) = 0.d0
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_alpha, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis
|
|
END_DOC
|
|
if (is_complex) then
|
|
print*,'error',irp_here
|
|
stop -1
|
|
else
|
|
call ao_to_mo(Fock_matrix_ao_alpha,size(Fock_matrix_ao_alpha,1), &
|
|
Fock_matrix_mo_alpha,size(Fock_matrix_mo_alpha,1))
|
|
endif
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_beta, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis
|
|
END_DOC
|
|
if (is_complex) then
|
|
print*,'error',irp_here
|
|
stop -1
|
|
else
|
|
call ao_to_mo(Fock_matrix_ao_beta,size(Fock_matrix_ao_beta,1), &
|
|
Fock_matrix_mo_beta,size(Fock_matrix_mo_beta,1))
|
|
endif
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num, ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix in AO basis set
|
|
END_DOC
|
|
|
|
if(frozen_orb_scf)then
|
|
call mo_to_ao(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
|
Fock_matrix_ao,size(Fock_matrix_ao,1))
|
|
else
|
|
if ( (elec_alpha_num == elec_beta_num).and. &
|
|
(level_shift == 0.) ) &
|
|
then
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
Fock_matrix_ao(i,j) = Fock_matrix_ao_alpha(i,j)
|
|
enddo
|
|
enddo
|
|
else
|
|
call mo_to_ao(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
|
Fock_matrix_ao,size(Fock_matrix_ao,1))
|
|
endif
|
|
endif
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, SCF_energy ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Hartree-Fock energy
|
|
END_DOC
|
|
SCF_energy = nuclear_repulsion
|
|
|
|
integer :: i,j,k
|
|
if (is_complex) then
|
|
complex*16 :: scf_e_tmp
|
|
scf_e_tmp = dcmplx(SCF_energy,0.d0)
|
|
do k=1,kpt_num
|
|
do j=1,ao_num_per_kpt
|
|
do i=1,ao_num_per_kpt
|
|
scf_e_tmp += 0.5d0 * ( &
|
|
(ao_one_e_integrals_kpts(i,j,k) + Fock_matrix_ao_alpha_kpts(i,j,k) ) * SCF_density_matrix_ao_alpha_kpts(j,i,k) +&
|
|
(ao_one_e_integrals_kpts(i,j,k) + Fock_matrix_ao_beta_kpts (i,j,k) ) * SCF_density_matrix_ao_beta_kpts (j,i,k) )
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!TODO: add check for imaginary part? (should be zero)
|
|
SCF_energy = dble(scf_e_tmp)
|
|
else
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
SCF_energy += 0.5d0 * ( &
|
|
(ao_one_e_integrals(i,j) + Fock_matrix_ao_alpha(i,j) ) * SCF_density_matrix_ao_alpha(i,j) +&
|
|
(ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j) )
|
|
enddo
|
|
enddo
|
|
endif
|
|
SCF_energy += extra_e_contrib_density
|
|
|
|
END_PROVIDER
|
|
|