mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-05 05:33:52 +01:00
834 lines
22 KiB
ReStructuredText
834 lines
22 KiB
ReStructuredText
.. _module_becke_numerical_grid:
|
|
|
|
.. program:: becke_numerical_grid
|
|
|
|
.. default-role:: option
|
|
|
|
====================
|
|
becke_numerical_grid
|
|
====================
|
|
|
|
This module contains all quantities needed to build Becke's grid used in general for DFT integration. Note that it can be used for whatever integration in R^3 as long as the functions to be integrated are mostly concentrated near the atomic regions.
|
|
|
|
This grid is built as the reunion of a spherical grid around each atom. Each spherical grid contains
|
|
a certain number of radial and angular points. No pruning is done on the angular part of the grid.
|
|
|
|
The main keyword for that module is:
|
|
|
|
* :option:`becke_numerical_grid grid_type_sgn` which controls the precision of the grid according the standard **SG-n** grids. This keyword controls the two providers `n_points_integration_angular` `n_points_radial_grid`.
|
|
|
|
The main providers of that module are:
|
|
|
|
* `n_points_integration_angular` which is the number of angular integration points. WARNING: it obeys to specific rules so it cannot be any integer number. Some of the possible values are [ 50 | 74 | 170 | 194 | 266 | 302 | 590 | 1202 | 2030 | 5810 ] for instance. See :file:`angular.f` for more details.
|
|
* `n_points_radial_grid` which is the number of radial angular points. This can be any strictly positive integer. Nevertheless, a minimum of 50 is in general necessary.
|
|
* `final_grid_points` which are the (x,y,z) coordinates of the grid points.
|
|
* `final_weight_at_r_vector` which are the weights at each grid point
|
|
|
|
|
|
For a simple example of how to use the grid, see :file:`example.irp.f`.
|
|
|
|
The spherical integration uses Lebedev-Laikov grids, which was used from the code distributed through CCL (http://www.ccl.net/).
|
|
See next section for explanations and citation policies.
|
|
|
|
.. code-block:: text
|
|
|
|
This subroutine is part of a set of subroutines that generate
|
|
Lebedev grids [1-6] for integration on a sphere. The original
|
|
C-code [1] was kindly provided by Dr. Dmitri N. Laikov and
|
|
translated into fortran by Dr. Christoph van Wuellen.
|
|
This subroutine was translated using a C to fortran77 conversion
|
|
tool written by Dr. Christoph van Wuellen.
|
|
|
|
Users of this code are asked to include reference [1] in their
|
|
publications, and in the user- and programmers-manuals
|
|
describing their codes.
|
|
|
|
This code was distributed through CCL (http://www.ccl.net/).
|
|
|
|
[1] V.I. Lebedev, and D.N. Laikov
|
|
"A quadrature formula for the sphere of the 131st
|
|
algebraic order of accuracy"
|
|
Doklady Mathematics, Vol. 59, No. 3, 1999, pp. 477-481.
|
|
|
|
[2] V.I. Lebedev
|
|
"A quadrature formula for the sphere of 59th algebraic
|
|
order of accuracy"
|
|
Russian Acad. Sci. Dokl. Math., Vol. 50, 1995, pp. 283-286.
|
|
|
|
[3] V.I. Lebedev, and A.L. Skorokhodov
|
|
"Quadrature formulas of orders 41, 47, and 53 for the sphere"
|
|
Russian Acad. Sci. Dokl. Math., Vol. 45, 1992, pp. 587-592.
|
|
|
|
[4] V.I. Lebedev
|
|
"Spherical quadrature formulas exact to orders 25-29"
|
|
Siberian Mathematical Journal, Vol. 18, 1977, pp. 99-107.
|
|
|
|
[5] V.I. Lebedev
|
|
"Quadratures on a sphere"
|
|
Computational Mathematics and Mathematical Physics, Vol. 16,
|
|
1976, pp. 10-24.
|
|
|
|
[6] V.I. Lebedev
|
|
"Values of the nodes and weights of ninth to seventeenth
|
|
order Gauss-Markov quadrature formulae invariant under the
|
|
octahedron group with inversion"
|
|
Computational Mathematics and Mathematical Physics, Vol. 15,
|
|
1975, pp. 44-51.
|
|
|
|
|
|
|
|
|
|
|
|
EZFIO parameters
|
|
----------------
|
|
|
|
.. option:: grid_type_sgn
|
|
|
|
Type of grid used for the Becke's numerical grid. Can be, by increasing accuracy: [ 0 | 1 | 2 | 3 ]
|
|
|
|
Default: 2
|
|
|
|
|
|
Providers
|
|
---------
|
|
|
|
.. c:var:: alpha_knowles
|
|
|
|
|
|
File : :file:`becke_numerical_grid/integration_radial.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: alpha_knowles (100)
|
|
|
|
|
|
Recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
|
|
as a function of the nuclear charge
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
.. c:var:: angular_quadrature_points
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: angular_quadrature_points (n_points_integration_angular,3)
|
|
double precision, allocatable :: weights_angular_points (n_points_integration_angular)
|
|
|
|
|
|
weights and grid points for the integration on the angular variables on
|
|
the unit sphere centered on (0,0,0)
|
|
According to the LEBEDEV scheme
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_radial_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
.. c:var:: dr_radial_integral
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: grid_points_radial (n_points_radial_grid)
|
|
double precision :: dr_radial_integral
|
|
|
|
|
|
points in [0,1] to map the radial integral [0,\infty]
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_radial_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
.. c:var:: final_grid_points
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: final_grid_points (3,n_points_final_grid)
|
|
double precision, allocatable :: final_weight_at_r_vector (n_points_final_grid)
|
|
integer, allocatable :: index_final_points (3,n_points_final_grid)
|
|
integer, allocatable :: index_final_points_reverse (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
|
|
|
final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
|
|
|
index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
|
|
|
index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_grad_in_r_array`
|
|
* :c:data:`aos_in_r_array`
|
|
* :c:data:`aos_lapl_in_r_array`
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vc_alpha_pbe_w`
|
|
* :c:data:`aos_vc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_pbe_w`
|
|
* :c:data:`energy_sr_x_lda`
|
|
* :c:data:`energy_sr_x_pbe`
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`mos_in_r_array`
|
|
* :c:data:`one_e_dm_alpha_at_r`
|
|
* :c:data:`one_e_dm_and_grad_alpha_in_r`
|
|
|
|
|
|
.. c:var:: final_weight_at_r
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: final_weight_at_r (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`alpha_knowles`
|
|
* :c:data:`angular_quadrature_points`
|
|
* :c:data:`grid_points_radial`
|
|
* :c:data:`m_knowles`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_charge`
|
|
* :c:data:`nucl_num`
|
|
* :c:data:`weight_at_r`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`n_points_final_grid`
|
|
|
|
|
|
.. c:var:: final_weight_at_r_vector
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: final_grid_points (3,n_points_final_grid)
|
|
double precision, allocatable :: final_weight_at_r_vector (n_points_final_grid)
|
|
integer, allocatable :: index_final_points (3,n_points_final_grid)
|
|
integer, allocatable :: index_final_points_reverse (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
|
|
|
final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
|
|
|
index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
|
|
|
index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_grad_in_r_array`
|
|
* :c:data:`aos_in_r_array`
|
|
* :c:data:`aos_lapl_in_r_array`
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vc_alpha_pbe_w`
|
|
* :c:data:`aos_vc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_pbe_w`
|
|
* :c:data:`energy_sr_x_lda`
|
|
* :c:data:`energy_sr_x_pbe`
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`mos_in_r_array`
|
|
* :c:data:`one_e_dm_alpha_at_r`
|
|
* :c:data:`one_e_dm_and_grad_alpha_in_r`
|
|
|
|
|
|
.. c:var:: grid_points_per_atom
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: grid_points_per_atom (3,n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
x,y,z coordinates of grid points used for integration in 3d space
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`alpha_knowles`
|
|
* :c:data:`angular_quadrature_points`
|
|
* :c:data:`grid_points_radial`
|
|
* :c:data:`m_knowles`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_charge`
|
|
* :c:data:`nucl_coord`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`one_e_dm_alpha_in_r`
|
|
* :c:data:`weight_at_r`
|
|
|
|
|
|
.. c:var:: grid_points_radial
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: grid_points_radial (n_points_radial_grid)
|
|
double precision :: dr_radial_integral
|
|
|
|
|
|
points in [0,1] to map the radial integral [0,\infty]
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_radial_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
.. c:var:: index_final_points
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: final_grid_points (3,n_points_final_grid)
|
|
double precision, allocatable :: final_weight_at_r_vector (n_points_final_grid)
|
|
integer, allocatable :: index_final_points (3,n_points_final_grid)
|
|
integer, allocatable :: index_final_points_reverse (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
|
|
|
final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
|
|
|
index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
|
|
|
index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_grad_in_r_array`
|
|
* :c:data:`aos_in_r_array`
|
|
* :c:data:`aos_lapl_in_r_array`
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vc_alpha_pbe_w`
|
|
* :c:data:`aos_vc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_pbe_w`
|
|
* :c:data:`energy_sr_x_lda`
|
|
* :c:data:`energy_sr_x_pbe`
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`mos_in_r_array`
|
|
* :c:data:`one_e_dm_alpha_at_r`
|
|
* :c:data:`one_e_dm_and_grad_alpha_in_r`
|
|
|
|
|
|
.. c:var:: index_final_points_reverse
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: final_grid_points (3,n_points_final_grid)
|
|
double precision, allocatable :: final_weight_at_r_vector (n_points_final_grid)
|
|
integer, allocatable :: index_final_points (3,n_points_final_grid)
|
|
integer, allocatable :: index_final_points_reverse (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
|
|
|
final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
|
|
|
index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
|
|
|
index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_grad_in_r_array`
|
|
* :c:data:`aos_in_r_array`
|
|
* :c:data:`aos_lapl_in_r_array`
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vc_alpha_pbe_w`
|
|
* :c:data:`aos_vc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_pbe_w`
|
|
* :c:data:`energy_sr_x_lda`
|
|
* :c:data:`energy_sr_x_pbe`
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`mos_in_r_array`
|
|
* :c:data:`one_e_dm_alpha_at_r`
|
|
* :c:data:`one_e_dm_and_grad_alpha_in_r`
|
|
|
|
|
|
.. c:var:: m_knowles
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
integer :: m_knowles
|
|
|
|
|
|
value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996)
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
.. c:var:: n_points_final_grid
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke_vector.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
integer :: n_points_final_grid
|
|
|
|
|
|
Number of points which are non zero
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_num`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_grad_in_r_array`
|
|
* :c:data:`aos_in_r_array`
|
|
* :c:data:`aos_lapl_in_r_array`
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vc_alpha_pbe_w`
|
|
* :c:data:`aos_vc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_pbe_w`
|
|
* :c:data:`energy_sr_x_lda`
|
|
* :c:data:`energy_sr_x_pbe`
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`mos_grad_in_r_array`
|
|
* :c:data:`mos_in_r_array`
|
|
* :c:data:`mos_lapl_in_r_array`
|
|
* :c:data:`one_e_dm_alpha_at_r`
|
|
* :c:data:`one_e_dm_and_grad_alpha_in_r`
|
|
* :c:data:`potential_sr_c_alpha_ao_lda`
|
|
* :c:data:`potential_sr_x_alpha_ao_lda`
|
|
* :c:data:`potential_sr_x_alpha_ao_pbe`
|
|
* :c:data:`potential_x_alpha_ao_lda`
|
|
* :c:data:`potential_x_alpha_ao_pbe`
|
|
|
|
|
|
.. c:var:: n_points_grid_per_atom
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
integer :: n_points_grid_per_atom
|
|
|
|
|
|
Number of grid points per atom
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_radial_grid`
|
|
|
|
|
|
|
|
.. c:var:: n_points_integration_angular
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
integer :: n_points_radial_grid
|
|
integer :: n_points_integration_angular
|
|
|
|
|
|
n_points_radial_grid = number of radial grid points per atom
|
|
|
|
n_points_integration_angular = number of angular grid points per atom
|
|
|
|
These numbers are automatically set by setting the grid_type_sgn parameter
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`grid_type_sgn`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`angular_quadrature_points`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`grid_points_radial`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_grid_per_atom`
|
|
* :c:data:`one_e_dm_alpha_in_r`
|
|
* :c:data:`weight_at_r`
|
|
|
|
|
|
.. c:var:: n_points_radial_grid
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
integer :: n_points_radial_grid
|
|
integer :: n_points_integration_angular
|
|
|
|
|
|
n_points_radial_grid = number of radial grid points per atom
|
|
|
|
n_points_integration_angular = number of angular grid points per atom
|
|
|
|
These numbers are automatically set by setting the grid_type_sgn parameter
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`grid_type_sgn`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`angular_quadrature_points`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`grid_points_radial`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_points_grid_per_atom`
|
|
* :c:data:`one_e_dm_alpha_in_r`
|
|
* :c:data:`weight_at_r`
|
|
|
|
|
|
.. c:var:: weight_at_r
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: weight_at_r (n_points_integration_angular,n_points_radial_grid,nucl_num)
|
|
|
|
|
|
Weight function at grid points : w_n(r) according to the equation (22)
|
|
of Becke original paper (JCP, 88, 1988)
|
|
|
|
The "n" discrete variable represents the nucleis which in this array is
|
|
represented by the last dimension and the points are labelled by the
|
|
other dimensions.
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`nucl_coord_transp`
|
|
* :c:data:`nucl_dist_inv`
|
|
* :c:data:`nucl_num`
|
|
* :c:data:`slater_bragg_type_inter_distance_ua`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
|
|
|
|
.. c:var:: weights_angular_points
|
|
|
|
|
|
File : :file:`becke_numerical_grid/grid_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: angular_quadrature_points (n_points_integration_angular,3)
|
|
double precision, allocatable :: weights_angular_points (n_points_integration_angular)
|
|
|
|
|
|
weights and grid points for the integration on the angular variables on
|
|
the unit sphere centered on (0,0,0)
|
|
According to the LEBEDEV scheme
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_radial_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`grid_points_per_atom`
|
|
|
|
|
|
|
|
Subroutines / functions
|
|
-----------------------
|
|
|
|
.. c:function:: cell_function_becke:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/step_function_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision function cell_function_becke(r,atom_number)
|
|
|
|
|
|
atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
|
|
r(1:3) :: x,y,z coordinantes of the current point
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`nucl_dist_inv`
|
|
* :c:data:`slater_bragg_type_inter_distance_ua`
|
|
* :c:data:`nucl_coord_transp`
|
|
* :c:data:`nucl_num`
|
|
|
|
|
|
.. c:function:: derivative_knowles_function:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/integration_radial.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision function derivative_knowles_function(alpha,m,x)
|
|
|
|
|
|
Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
|
|
|
|
|
|
.. c:function:: example_becke_numerical_grid:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/example.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
subroutine example_becke_numerical_grid
|
|
|
|
|
|
subroutine that illustrates the main features available in becke_numerical_grid
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`final_weight_at_r`
|
|
* :c:data:`n_points_radial_grid`
|
|
* :c:data:`grid_points_per_atom`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`nucl_coord`
|
|
* :c:data:`nucl_num`
|
|
|
|
|
|
.. c:function:: f_function_becke:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/step_function_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision function f_function_becke(x)
|
|
|
|
|
|
|
|
|
|
.. c:function:: knowles_function:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/integration_radial.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision function knowles_function(alpha,m,x)
|
|
|
|
|
|
Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
|
|
the Log "m" function ( equation (7) in the paper )
|
|
|
|
|
|
.. c:function:: step_function_becke:
|
|
|
|
|
|
File : :file:`becke_numerical_grid/step_function_becke.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision function step_function_becke(x)
|
|
|
|
|
|
Step function of the Becke paper (1988, JCP,88(4))
|
|
|