mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-05-06 15:14:58 +02:00
442 lines
14 KiB
Fortran
442 lines
14 KiB
Fortran
|
|
! ---
|
|
|
|
! TODO : strong optmization : write the loops in a different way
|
|
! : for each couple of AO, the gaussian product are done once for all
|
|
|
|
BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num, n_points_final_grid) ]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! if J(r1,r2) = u12:
|
|
!
|
|
! gradu_squared_u_ij_mu = -0.50 x \int r2 [ (grad_1 u12)^2 + (grad_2 u12^2)] \phi_i(2) \phi_j(2)
|
|
! = -0.25 x \int r2 (1 - erf(mu*r12))^2 \phi_i(2) \phi_j(2)
|
|
! and
|
|
! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
|
|
!
|
|
! if J(r1,r2) = u12 x v1 x v2
|
|
!
|
|
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)]) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
|
|
! = -0.25 x v1^2 \int r2 \phi_i(2) \phi_j(2) [1 - erf(mu r12)]^2 v2^2
|
|
! + -0.50 x (grad_1 v1)^2 \int r2 \phi_i(2) \phi_j(2) u12^2 v2^2
|
|
! + -1.00 x v1 (grad_1 v1) \int r2 \phi_i(2) \phi_j(2) (grad_1 u12) v2^2
|
|
! = v1^2 x int2_grad1u2_grad2u2_j1b2
|
|
! + -0.5 x (grad_1 v1)^2 x int2_u2_j1b2
|
|
! + -1.0 X V1 x (grad_1 v1) \cdot [ int2_u_grad1u_j1b2 x r - int2_u_grad1u_x_j1b ]
|
|
!
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: ipoint, i, j, m, igauss
|
|
double precision :: x, y, z, r(3), delta, coef
|
|
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
|
|
double precision :: tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
|
|
double precision :: time0, time1
|
|
double precision, external :: overlap_gauss_r12_ao
|
|
|
|
print*, ' providing gradu_squared_u_ij_mu ...'
|
|
call wall_time(time0)
|
|
|
|
PROVIDE j1b_type
|
|
|
|
if(j1b_type .eq. 3) then
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
|
|
x = final_grid_points(1,ipoint)
|
|
y = final_grid_points(2,ipoint)
|
|
z = final_grid_points(3,ipoint)
|
|
tmp_v = v_1b (ipoint)
|
|
tmp_x = v_1b_grad(1,ipoint)
|
|
tmp_y = v_1b_grad(2,ipoint)
|
|
tmp_z = v_1b_grad(3,ipoint)
|
|
|
|
tmp1 = tmp_v * tmp_v
|
|
tmp2 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
|
|
tmp3 = tmp_v * tmp_x
|
|
tmp4 = tmp_v * tmp_y
|
|
tmp5 = tmp_v * tmp_z
|
|
|
|
tmp6 = -x * tmp3
|
|
tmp7 = -y * tmp4
|
|
tmp8 = -z * tmp5
|
|
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
|
|
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
|
|
|
|
gradu_squared_u_ij_mu(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint) &
|
|
+ tmp2 * int2_u2_j1b2 (i,j,ipoint) &
|
|
+ tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(1,i,j,ipoint) &
|
|
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(2,i,j,ipoint) &
|
|
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(3,i,j,ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
else
|
|
|
|
gradu_squared_u_ij_mu = 0.d0
|
|
do ipoint = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,ipoint)
|
|
r(2) = final_grid_points(2,ipoint)
|
|
r(3) = final_grid_points(3,ipoint)
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
do igauss = 1, n_max_fit_slat
|
|
delta = expo_gauss_1_erf_x_2(igauss)
|
|
coef = coef_gauss_1_erf_x_2(igauss)
|
|
gradu_squared_u_ij_mu(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
call wall_time(time1)
|
|
print*, ' Wall time for gradu_squared_u_ij_mu = ', time1 - time0
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
!BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
|
|
!
|
|
! BEGIN_DOC
|
|
! !
|
|
! ! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
|
|
! !
|
|
! END_DOC
|
|
!
|
|
! implicit none
|
|
! integer :: ipoint, i, j, k, l
|
|
! double precision :: weight1, ao_ik_r, ao_i_r
|
|
! double precision, allocatable :: ac_mat(:,:,:,:)
|
|
!
|
|
! allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
|
|
! ac_mat = 0.d0
|
|
!
|
|
! do ipoint = 1, n_points_final_grid
|
|
! weight1 = final_weight_at_r_vector(ipoint)
|
|
!
|
|
! do i = 1, ao_num
|
|
! ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
|
|
!
|
|
! do k = 1, ao_num
|
|
! ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
|
|
!
|
|
! do j = 1, ao_num
|
|
! do l = 1, ao_num
|
|
! ac_mat(k,i,l,j) += ao_ik_r * gradu_squared_u_ij_mu(l,j,ipoint)
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
!
|
|
! do j = 1, ao_num
|
|
! do l = 1, ao_num
|
|
! do i = 1, ao_num
|
|
! do k = 1, ao_num
|
|
! tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
|
|
! !write(11,*) tc_grad_square_ao(k,i,l,j)
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
!
|
|
! deallocate(ac_mat)
|
|
!
|
|
!END_PROVIDER
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, grad_1_squared_u_ij_mu_new, (n_points_final_grid, ao_num, ao_num)]
|
|
implicit none
|
|
integer :: ipoint,i,j,m,igauss
|
|
BEGIN_DOC
|
|
! grad_1_squared_u_ij_mu(j,i,ipoint) = -1/2 \int dr2 phi_j(r2) phi_i(r2) |\grad_r1 u(r1,r2,\mu)|^2
|
|
! |\grad_r1 u(r1,r2,\mu)|^2 = 1/4 * (1 - erf(mu*r12))^2
|
|
! ! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
|
|
END_DOC
|
|
include 'constants.include.F'
|
|
double precision :: r(3),delta,coef
|
|
double precision :: overlap_gauss_r12_ao,time0,time1
|
|
integer :: num_a,num_b,power_A(3), power_B(3),l,k
|
|
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
|
|
double precision :: A_new(0:max_dim,3)! new polynom
|
|
double precision :: A_center_new(3) ! new center
|
|
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
|
double precision :: alpha_new ! new exponent
|
|
double precision :: fact_a_new, coef_i, coef_j, k_ab,center_new(3),p_new,c_tmp,coef_last ! constant factor
|
|
double precision :: coefxy, coefx, coefy, coefz,coefxyz
|
|
integer :: d(3),lx,ly,lz,iorder_tmp(3),dim1
|
|
double precision :: overlap,overlap_x,overlap_y,overlap_z,thr
|
|
dim1=100
|
|
thr = 0.d0
|
|
print*,'providing grad_1_squared_u_ij_mu_new ...'
|
|
grad_1_squared_u_ij_mu_new = 0.d0
|
|
call wall_time(time0)
|
|
!TODO : strong optmization : write the loops in a different way
|
|
! : for each couple of AO, the gaussian product are done once for all
|
|
d = 0
|
|
do i = 1, ao_num
|
|
do j = 1, ao_num
|
|
! \int dr2 phi_j(r2) phi_i(r2) (1 - erf(mu*r12))^2
|
|
! = \sum_i coef_gauss_1_erf_x_2(i) \int dr2 phi_j(r2) phi_i(r2) exp(-expo_gauss_1_erf_x_2(i) * (r_1 - r_2)^2)
|
|
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
|
cycle
|
|
endif
|
|
num_A = ao_nucl(i)
|
|
power_A(1:3)= ao_power(i,1:3)
|
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
|
num_B = ao_nucl(j)
|
|
power_B(1:3)= ao_power(j,1:3)
|
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
|
do l=1,ao_prim_num(i)
|
|
coef_i = ao_coef_normalized_ordered_transp(l,i)
|
|
alpha = ao_expo_ordered_transp(l,i)
|
|
do k=1,ao_prim_num(j)
|
|
beta = ao_expo_ordered_transp(k,j)
|
|
coef_j = ao_coef_normalized_ordered_transp(k,j)
|
|
|
|
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
|
! from gaussian_A * gaussian_B
|
|
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
|
beta,alpha,power_B,power_A,B_center,A_center,n_pt_max_integrals)
|
|
c_tmp = coef_i*coef_j*fact_a_new
|
|
if(dabs(c_tmp).lt.thr)cycle
|
|
do ipoint = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,ipoint)
|
|
r(2) = final_grid_points(2,ipoint)
|
|
r(3) = final_grid_points(3,ipoint)
|
|
do igauss = 1, n_max_fit_slat
|
|
delta = expo_gauss_1_erf_x_2(igauss)
|
|
coef = coef_gauss_1_erf_x_2(igauss)
|
|
coef_last = c_tmp * coef
|
|
if(dabs(coef_last).lt.thr)cycle
|
|
do lx = 0, iorder_a_new(1)
|
|
coefx = A_new(lx,1)
|
|
coefx *= coef_last
|
|
! if(dabs(coefx).lt.thr)cycle
|
|
iorder_tmp(1) = lx
|
|
do ly = 0, iorder_a_new(2)
|
|
coefy = A_new(ly,2)
|
|
coefxy= coefx*coefy
|
|
! if(dabs(coefxy).lt.thr)cycle
|
|
iorder_tmp(2) = ly
|
|
do lz = 0, iorder_a_new(3)
|
|
coefz = A_new(lz,3)
|
|
coefxyz = coefz * coefxy
|
|
! if(dabs(coefxyz).lt.thr)cycle
|
|
iorder_tmp(3) = lz
|
|
! call gaussian_product(alpha_new,A_center_new,delta,r,k_ab,p_new,center_new)
|
|
! if(dabs(coef_last*k_ab).lt.thr)cycle
|
|
call overlap_gaussian_xyz(A_center_new,r,alpha_new,delta,iorder_tmp,d,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
|
grad_1_squared_u_ij_mu_new(ipoint,j,i) += -0.25 * coefxyz * overlap
|
|
enddo ! igauss
|
|
enddo ! ipoint
|
|
enddo ! lz
|
|
enddo ! ly
|
|
enddo ! lx
|
|
enddo ! k
|
|
enddo ! l
|
|
enddo ! j
|
|
enddo ! i
|
|
call wall_time(time1)
|
|
print*,'Wall time for grad_1_squared_u_ij_mu_new = ',time1 - time0
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
|
|
|
|
BEGIN_DOC
|
|
!
|
|
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
|
|
!
|
|
END_DOC
|
|
|
|
implicit none
|
|
integer :: ipoint, i, j, k, l
|
|
double precision :: weight1, ao_ik_r, ao_i_r
|
|
double precision, allocatable :: ac_mat(:,:,:,:), bc_mat(:,:,:,:)
|
|
|
|
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
|
|
ac_mat = 0.d0
|
|
allocate(bc_mat(ao_num,ao_num,ao_num,ao_num))
|
|
bc_mat = 0.d0
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
weight1 = final_weight_at_r_vector(ipoint)
|
|
|
|
do i = 1, ao_num
|
|
ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
|
|
|
|
do k = 1, ao_num
|
|
ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
|
|
|
|
do j = 1, ao_num
|
|
do l = 1, ao_num
|
|
ac_mat(k,i,l,j) += ao_ik_r * ( u12sq_j1bsq(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(l,j,ipoint) )
|
|
bc_mat(k,i,l,j) += ao_ik_r * grad12_j12(l,j,ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
do j = 1, ao_num
|
|
do l = 1, ao_num
|
|
do i = 1, ao_num
|
|
do k = 1, ao_num
|
|
tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) + bc_mat(k,i,l,j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
deallocate(ac_mat)
|
|
deallocate(bc_mat)
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_grid) ]
|
|
|
|
implicit none
|
|
integer :: ipoint, i, j, m, igauss
|
|
double precision :: r(3), delta, coef
|
|
double precision :: tmp1
|
|
double precision :: time0, time1
|
|
double precision, external :: overlap_gauss_r12_ao
|
|
|
|
print*, ' providing grad12_j12 ...'
|
|
call wall_time(time0)
|
|
|
|
PROVIDE j1b_type
|
|
|
|
if(j1b_type .eq. 3) then
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
tmp1 = v_1b(ipoint)
|
|
tmp1 = tmp1 * tmp1
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
grad12_j12(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
else
|
|
|
|
grad12_j12 = 0.d0
|
|
do ipoint = 1, n_points_final_grid
|
|
r(1) = final_grid_points(1,ipoint)
|
|
r(2) = final_grid_points(2,ipoint)
|
|
r(3) = final_grid_points(3,ipoint)
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
do igauss = 1, n_max_fit_slat
|
|
delta = expo_gauss_1_erf_x_2(igauss)
|
|
coef = coef_gauss_1_erf_x_2(igauss)
|
|
grad12_j12(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
call wall_time(time1)
|
|
print*, ' Wall time for grad12_j12 = ', time1 - time0
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid) ]
|
|
|
|
implicit none
|
|
integer :: ipoint, i, j
|
|
double precision :: tmp_x, tmp_y, tmp_z
|
|
double precision :: tmp1
|
|
double precision :: time0, time1
|
|
|
|
print*, ' providing u12sq_j1bsq ...'
|
|
call wall_time(time0)
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
tmp_x = v_1b_grad(1,ipoint)
|
|
tmp_y = v_1b_grad(2,ipoint)
|
|
tmp_z = v_1b_grad(3,ipoint)
|
|
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
u12sq_j1bsq(i,j,ipoint) = tmp1 * int2_u2_j1b2(i,j,ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call wall_time(time1)
|
|
print*, ' Wall time for u12sq_j1bsq = ', time1 - time0
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|
|
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]
|
|
|
|
implicit none
|
|
integer :: ipoint, i, j, m, igauss
|
|
double precision :: x, y, z
|
|
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
|
|
double precision :: tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
|
|
double precision :: time0, time1
|
|
double precision, external :: overlap_gauss_r12_ao
|
|
|
|
print*, ' providing u12_grad1_u12_j1b_grad1_j1b ...'
|
|
call wall_time(time0)
|
|
|
|
do ipoint = 1, n_points_final_grid
|
|
|
|
x = final_grid_points(1,ipoint)
|
|
y = final_grid_points(2,ipoint)
|
|
z = final_grid_points(3,ipoint)
|
|
tmp_v = v_1b (ipoint)
|
|
tmp_x = v_1b_grad(1,ipoint)
|
|
tmp_y = v_1b_grad(2,ipoint)
|
|
tmp_z = v_1b_grad(3,ipoint)
|
|
|
|
tmp3 = tmp_v * tmp_x
|
|
tmp4 = tmp_v * tmp_y
|
|
tmp5 = tmp_v * tmp_z
|
|
|
|
tmp6 = -x * tmp3
|
|
tmp7 = -y * tmp4
|
|
tmp8 = -z * tmp5
|
|
|
|
do j = 1, ao_num
|
|
do i = 1, ao_num
|
|
|
|
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
|
|
|
|
u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(1,i,j,ipoint) &
|
|
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(2,i,j,ipoint) &
|
|
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(3,i,j,ipoint)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call wall_time(time1)
|
|
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b = ', time1 - time0
|
|
|
|
END_PROVIDER
|
|
|
|
! ---
|
|
|