10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-05-06 15:14:58 +02:00
QuantumPackage/src/non_h_ints_mu/grad_squared.irp.f
2022-10-22 18:08:56 +02:00

442 lines
14 KiB
Fortran

! ---
! TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_DOC
!
! if J(r1,r2) = u12:
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 [ (grad_1 u12)^2 + (grad_2 u12^2)] \phi_i(2) \phi_j(2)
! = -0.25 x \int r2 (1 - erf(mu*r12))^2 \phi_i(2) \phi_j(2)
! and
! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
!
! if J(r1,r2) = u12 x v1 x v2
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)]) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
! = -0.25 x v1^2 \int r2 \phi_i(2) \phi_j(2) [1 - erf(mu r12)]^2 v2^2
! + -0.50 x (grad_1 v1)^2 \int r2 \phi_i(2) \phi_j(2) u12^2 v2^2
! + -1.00 x v1 (grad_1 v1) \int r2 \phi_i(2) \phi_j(2) (grad_1 u12) v2^2
! = v1^2 x int2_grad1u2_grad2u2_j1b2
! + -0.5 x (grad_1 v1)^2 x int2_u2_j1b2
! + -1.0 X V1 x (grad_1 v1) \cdot [ int2_u_grad1u_j1b2 x r - int2_u_grad1u_x_j1b ]
!
!
END_DOC
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: x, y, z, r(3), delta, coef
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
double precision :: tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing gradu_squared_u_ij_mu ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp1 = tmp_v * tmp_v
tmp2 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
tmp5 = tmp_v * tmp_z
tmp6 = -x * tmp3
tmp7 = -y * tmp4
tmp8 = -z * tmp5
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
gradu_squared_u_ij_mu(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint) &
+ tmp2 * int2_u2_j1b2 (i,j,ipoint) &
+ tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(1,i,j,ipoint) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(2,i,j,ipoint) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(3,i,j,ipoint)
enddo
enddo
enddo
else
gradu_squared_u_ij_mu = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
gradu_squared_u_ij_mu(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
endif
call wall_time(time1)
print*, ' Wall time for gradu_squared_u_ij_mu = ', time1 - time0
END_PROVIDER
! ---
!BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
!
! BEGIN_DOC
! !
! ! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
! !
! END_DOC
!
! implicit none
! integer :: ipoint, i, j, k, l
! double precision :: weight1, ao_ik_r, ao_i_r
! double precision, allocatable :: ac_mat(:,:,:,:)
!
! allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
! ac_mat = 0.d0
!
! do ipoint = 1, n_points_final_grid
! weight1 = final_weight_at_r_vector(ipoint)
!
! do i = 1, ao_num
! ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
!
! do k = 1, ao_num
! ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
!
! do j = 1, ao_num
! do l = 1, ao_num
! ac_mat(k,i,l,j) += ao_ik_r * gradu_squared_u_ij_mu(l,j,ipoint)
! enddo
! enddo
! enddo
! enddo
! enddo
!
! do j = 1, ao_num
! do l = 1, ao_num
! do i = 1, ao_num
! do k = 1, ao_num
! tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
! !write(11,*) tc_grad_square_ao(k,i,l,j)
! enddo
! enddo
! enddo
! enddo
!
! deallocate(ac_mat)
!
!END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_1_squared_u_ij_mu_new, (n_points_final_grid, ao_num, ao_num)]
implicit none
integer :: ipoint,i,j,m,igauss
BEGIN_DOC
! grad_1_squared_u_ij_mu(j,i,ipoint) = -1/2 \int dr2 phi_j(r2) phi_i(r2) |\grad_r1 u(r1,r2,\mu)|^2
! |\grad_r1 u(r1,r2,\mu)|^2 = 1/4 * (1 - erf(mu*r12))^2
! ! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
END_DOC
include 'constants.include.F'
double precision :: r(3),delta,coef
double precision :: overlap_gauss_r12_ao,time0,time1
integer :: num_a,num_b,power_A(3), power_B(3),l,k
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
double precision :: A_new(0:max_dim,3)! new polynom
double precision :: A_center_new(3) ! new center
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
double precision :: alpha_new ! new exponent
double precision :: fact_a_new, coef_i, coef_j, k_ab,center_new(3),p_new,c_tmp,coef_last ! constant factor
double precision :: coefxy, coefx, coefy, coefz,coefxyz
integer :: d(3),lx,ly,lz,iorder_tmp(3),dim1
double precision :: overlap,overlap_x,overlap_y,overlap_z,thr
dim1=100
thr = 0.d0
print*,'providing grad_1_squared_u_ij_mu_new ...'
grad_1_squared_u_ij_mu_new = 0.d0
call wall_time(time0)
!TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
d = 0
do i = 1, ao_num
do j = 1, ao_num
! \int dr2 phi_j(r2) phi_i(r2) (1 - erf(mu*r12))^2
! = \sum_i coef_gauss_1_erf_x_2(i) \int dr2 phi_j(r2) phi_i(r2) exp(-expo_gauss_1_erf_x_2(i) * (r_1 - r_2)^2)
if(ao_overlap_abs(j,i).lt.1.d-12)then
cycle
endif
num_A = ao_nucl(i)
power_A(1:3)= ao_power(i,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j)
power_B(1:3)= ao_power(j,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(i)
coef_i = ao_coef_normalized_ordered_transp(l,i)
alpha = ao_expo_ordered_transp(l,i)
do k=1,ao_prim_num(j)
beta = ao_expo_ordered_transp(k,j)
coef_j = ao_coef_normalized_ordered_transp(k,j)
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
! from gaussian_A * gaussian_B
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
beta,alpha,power_B,power_A,B_center,A_center,n_pt_max_integrals)
c_tmp = coef_i*coef_j*fact_a_new
if(dabs(c_tmp).lt.thr)cycle
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
coef_last = c_tmp * coef
if(dabs(coef_last).lt.thr)cycle
do lx = 0, iorder_a_new(1)
coefx = A_new(lx,1)
coefx *= coef_last
! if(dabs(coefx).lt.thr)cycle
iorder_tmp(1) = lx
do ly = 0, iorder_a_new(2)
coefy = A_new(ly,2)
coefxy= coefx*coefy
! if(dabs(coefxy).lt.thr)cycle
iorder_tmp(2) = ly
do lz = 0, iorder_a_new(3)
coefz = A_new(lz,3)
coefxyz = coefz * coefxy
! if(dabs(coefxyz).lt.thr)cycle
iorder_tmp(3) = lz
! call gaussian_product(alpha_new,A_center_new,delta,r,k_ab,p_new,center_new)
! if(dabs(coef_last*k_ab).lt.thr)cycle
call overlap_gaussian_xyz(A_center_new,r,alpha_new,delta,iorder_tmp,d,overlap_x,overlap_y,overlap_z,overlap,dim1)
grad_1_squared_u_ij_mu_new(ipoint,j,i) += -0.25 * coefxyz * overlap
enddo ! igauss
enddo ! ipoint
enddo ! lz
enddo ! ly
enddo ! lx
enddo ! k
enddo ! l
enddo ! j
enddo ! i
call wall_time(time1)
print*,'Wall time for grad_1_squared_u_ij_mu_new = ',time1 - time0
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_ik_r, ao_i_r
double precision, allocatable :: ac_mat(:,:,:,:), bc_mat(:,:,:,:)
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
ac_mat = 0.d0
allocate(bc_mat(ao_num,ao_num,ao_num,ao_num))
bc_mat = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
do i = 1, ao_num
ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
do k = 1, ao_num
ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
do j = 1, ao_num
do l = 1, ao_num
ac_mat(k,i,l,j) += ao_ik_r * ( u12sq_j1bsq(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(l,j,ipoint) )
bc_mat(k,i,l,j) += ao_ik_r * grad12_j12(l,j,ipoint)
enddo
enddo
enddo
enddo
enddo
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_square_ao(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) + bc_mat(k,i,l,j)
enddo
enddo
enddo
enddo
deallocate(ac_mat)
deallocate(bc_mat)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: r(3), delta, coef
double precision :: tmp1
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing grad12_j12 ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
tmp1 = v_1b(ipoint)
tmp1 = tmp1 * tmp1
do j = 1, ao_num
do i = 1, ao_num
grad12_j12(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
else
grad12_j12 = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
grad12_j12(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
endif
call wall_time(time1)
print*, ' Wall time for grad12_j12 = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j
double precision :: tmp_x, tmp_y, tmp_z
double precision :: tmp1
double precision :: time0, time1
print*, ' providing u12sq_j1bsq ...'
call wall_time(time0)
do ipoint = 1, n_points_final_grid
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
do j = 1, ao_num
do i = 1, ao_num
u12sq_j1bsq(i,j,ipoint) = tmp1 * int2_u2_j1b2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12sq_j1bsq = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: x, y, z
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
double precision :: tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing u12_grad1_u12_j1b_grad1_j1b ...'
call wall_time(time0)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
tmp5 = tmp_v * tmp_z
tmp6 = -x * tmp3
tmp7 = -y * tmp4
tmp8 = -z * tmp5
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(1,i,j,ipoint) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(2,i,j,ipoint) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(3,i,j,ipoint)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b = ', time1 - time0
END_PROVIDER
! ---