10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-04 05:03:50 +01:00
QuantumPackage/plugins/local/slater_tc/slater_tc_opt_diag.irp.f
2024-05-06 18:30:05 +02:00

834 lines
23 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, ref_tc_energy_tot]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_1e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_2e]
&BEGIN_PROVIDER [ double precision, ref_tc_energy_3e]
BEGIN_DOC
!
! Various component of the TC energy for the reference "HF" Slater determinant
!
END_DOC
implicit none
double precision :: hmono, htwoe, htot, hthree
PROVIDE N_int
PROVIDE HF_bitmask
PROVIDE mo_l_coef mo_r_coef
call diag_htc_bi_orth_2e_brute(N_int, HF_bitmask, hmono, htwoe, htot)
ref_tc_energy_1e = hmono
ref_tc_energy_2e = htwoe
if(three_body_h_tc) then
call diag_htc_bi_orth_3e_brute(N_int, HF_bitmask, hthree)
ref_tc_energy_3e = hthree
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
if(noL_standard) then
PROVIDE noL_0e
ref_tc_energy_tot += noL_0e
endif
END_PROVIDER
! ---
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
BEGIN_DOC
!
! Computes $\langle i|H|i \rangle$.
!
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det_in(Nint,2)
double precision, intent(out) :: hmono, htwoe, htot, hthree
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: i, nexc(2), ispin
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer(bit_kind) :: det_tmp(Nint,2)
integer :: na, nb
ASSERT (Nint > 0)
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i = 1, Nint
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),det_in(i,1))
particle(i,2) = iand(hole(i,2),det_in(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
if (nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree = ref_tc_energy_3e
htot = ref_tc_energy_tot
return
endif
!call debug_det(det_in,Nint)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
hthree = ref_tc_energy_3e
det_tmp = ref_bitmask
do ispin = 1, 2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i = 1, nexc(ispin)
!DIR$ FORCEINLINE
call ac_tc_operator(occ_particle(i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
!DIR$ FORCEINLINE
call a_tc_operator (occ_hole (i,ispin), ispin, det_tmp, hmono, htwoe, hthree, Nint, na, nb)
enddo
enddo
htot = hmono + htwoe + hthree + nuclear_repulsion
if(noL_standard) then
PROVIDE noL_0e
htot += noL_0e
endif
end
! ---
subroutine ac_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
BEGIN_DOC
!
! Routine that computes one- and two-body energy corresponding
!
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the ADDITION of that electron
!
! and the quantities hmono,htwoe,hthree are INCREMENTED
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono, htwoe, hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k, l, i, jj, mm, j, m
integer :: tmp(2)
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
stop -1
endif
if (iorb > mo_num) then
print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num
stop -1
endif
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
ASSERT (tmp(2) == elec_beta_num)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k >0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
ASSERT (l >= 0)
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i = 1, na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i = 1, nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc .and. (elec_num.gt.2) .and. three_e_3_idx_term) then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
!! oposite-spin/opposite-spin
do j = 1, nb
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree += direct_int - exchange_int
enddo
enddo
endif
na = na + 1
end
! ---
subroutine a_tc_operator(iorb, ispin, key, hmono, htwoe, hthree, Nint, na, nb)
use bitmasks
implicit none
BEGIN_DOC
!
! Routine that computes one- and two-body energy corresponding
!
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the REMOVAL of that electron
!
! and the quantities hmono,htwoe,hthree are INCREMENTED
!
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k, l, i, jj, mm, j, m
integer :: tmp(2)
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k>0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
na = na-1
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i = 1, na
htwoe = htwoe - mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i = 1, nb
htwoe = htwoe - mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
if(three_body_h_tc .and. elec_num.gt.2 .and. three_e_3_idx_term) then
!!!!! 3-e part
!! same-spin/same-spin
do j = 1, na
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin
do j = 1, na
jj = occ(j,ispin)
do m = 1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree -= (direct_int - exchange_int)
enddo
enddo
!! oposite-spin/opposite-spin
do j = 1, nb
jj = occ(j,other_spin)
do m = j+1, nb
mm = occ(m,other_spin)
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
exchange_int = three_e_3_idx_exch23_bi_ort(mm,jj,iorb) ! USES 3-IDX TENSOR
hthree -= (direct_int - exchange_int)
enddo
enddo
endif
end
! ---
subroutine diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, det_in,htot)
BEGIN_DOC
! Computes $\langle i|H|i \rangle$. WITHOUT ANY CONTRIBUTIONS FROM 3E TERMS
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det_in(Nint,2)
double precision, intent(out) :: htot
double precision :: hmono, htwoe
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: i, nexc(2), ispin
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer(bit_kind) :: det_tmp(Nint,2)
integer :: na, nb
ASSERT (Nint > 0)
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i=1,Nint
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),det_in(i,1))
particle(i,2) = iand(hole(i,2),det_in(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) = nexc(1) + popcnt(hole(i,1))
nexc(2) = nexc(2) + popcnt(hole(i,2))
enddo
if(nexc(1)+nexc(2) == 0) then
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
htot = ref_tc_energy_tot
return
endif
!call debug_det(det_in,Nint)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(particle, occ_particle, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of particles alpha
ASSERT (tmp(2) == nexc(2)) ! Number of particle beta
!DIR$ FORCEINLINE
call bitstring_to_list_ab(hole, occ_hole, tmp, Nint)
ASSERT (tmp(1) == nexc(1)) ! Number of holes alpha
ASSERT (tmp(2) == nexc(2)) ! Number of holes beta
det_tmp = ref_bitmask
hmono = ref_tc_energy_1e
htwoe = ref_tc_energy_2e
do ispin=1,2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
!DIR$ FORCEINLINE
call ac_tc_operator_no_3e( occ_particle(i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
!DIR$ FORCEINLINE
call a_tc_operator_no_3e ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe, Nint,na,nb)
enddo
enddo
htot = hmono+htwoe
end
subroutine ac_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the ADDITION of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the ADDITION of that electron
!
! and the quantities hmono,htwoe are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: direct_int, exchange_int
if (iorb < 1) then
print *, irp_here, ': iorb < 1'
print *, iorb, mo_num
stop -1
endif
if (iorb > mo_num) then
print *, irp_here, ': iorb > mo_num'
print *, iorb, mo_num
stop -1
endif
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp(2)
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
ASSERT (tmp(1) == elec_alpha_num)
ASSERT (tmp(2) == elec_beta_num)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k >0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
ASSERT (l >= 0)
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
hmono = hmono + mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i=1,na
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
htwoe = htwoe + mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
na = na+1
end
subroutine a_tc_operator_no_3e(iorb,ispin,key,hmono,htwoe,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Routine that computes one- and two-body energy corresponding
!
! to the REMOVAL of an electron in an orbital 'iorb' of spin 'ispin'
!
! onto a determinant 'key'.
!
! in output, the determinant key is changed by the REMOVAL of that electron
!
! and the quantities hmono,htwoe are INCREMENTED
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
integer :: tmp(2)
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = shiftr(iorb-1,bit_kind_shift)+1
ASSERT (k>0)
l = iorb - shiftl(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call bitstring_to_list_ab(key, occ, tmp, Nint)
na = na-1
hmono = hmono - mo_bi_ortho_tc_one_e(iorb,iorb)
! Same spin
do i = 1, na
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i = 1, nb
htwoe = htwoe- mo_bi_ortho_tc_two_e_jj(occ(i,other_spin),iorb)
enddo
end
! ---
subroutine diag_htc_bi_orth_2e_brute(Nint, key_i, hmono, htwoe, htot)
BEGIN_DOC
!
! diagonal element of htilde ONLY FOR ONE- AND TWO-BODY TERMS
!
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hmono,htwoe,htot
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2), i, j, ii, jj, ispin, jspin, k, kk
double precision :: get_mo_two_e_integral_tc_int
integer(bit_kind) :: key_i_core(Nint,2)
PROVIDE mo_bi_ortho_tc_two_e
hmono = 0.d0
htwoe = 0.d0
htot = 0.d0
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
do ispin = 1, 2
do i = 1, Ne(ispin)
ii = occ(i,ispin)
hmono += mo_bi_ortho_tc_one_e(ii,ii)
enddo
enddo
! alpha/beta two-body
ispin = 1
jspin = 2
do i = 1, Ne(ispin) ! electron 1 (so it can be associated to mu(r1))
ii = occ(i,ispin)
do j = 1, Ne(jspin) ! electron 2
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(jj,ii,jj,ii)
enddo
enddo
! alpha/alpha two-body
do i = 1, Ne(ispin)
ii = occ(i,ispin)
do j = i+1, Ne(ispin)
jj = occ(j,ispin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
! beta/beta two-body
do i = 1, Ne(jspin)
ii = occ(i,jspin)
do j = i+1, Ne(jspin)
jj = occ(j,jspin)
htwoe += mo_bi_ortho_tc_two_e(ii,jj,ii,jj) - mo_bi_ortho_tc_two_e(ii,jj,jj,ii)
enddo
enddo
htot = hmono + htwoe
end
! ---
subroutine diag_htc_bi_orth_3e_brute(Nint, key_i, hthree)
BEGIN_DOC
! diagonal element of htilde ONLY FOR THREE-BODY TERMS WITH BI ORTHONORMAL ORBITALS
END_DOC
use bitmasks
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
double precision, intent(out) :: hthree
integer :: occ(Nint*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,m,mm
integer(bit_kind) :: key_i_core(Nint,2)
double precision :: direct_int, exchange_int, ref
double precision, external :: sym_3_e_int_from_6_idx_tensor
double precision, external :: three_e_diag_parrallel_spin
PROVIDE mo_l_coef mo_r_coef
if(core_tc_op) then
do i = 1, Nint
key_i_core(i,1) = xor(key_i(i,1), core_bitmask(i,1))
key_i_core(i,2) = xor(key_i(i,2), core_bitmask(i,2))
enddo
call bitstring_to_list_ab(key_i_core, occ, Ne, Nint)
else
call bitstring_to_list_ab(key_i, occ, Ne, Nint)
endif
hthree = 0.d0
if((Ne(1)+Ne(2)) .ge. 3) then
! alpha/alpha/beta three-body
do i = 1, Ne(1)
ii = occ(i,1)
do j = i+1, Ne(1)
jj = occ(j,1)
do m = 1, Ne(2)
mm = occ(m,2)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii) !uses 3-idx tensor
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii) !uses 3-idx tensor
hthree += direct_int - exchange_int
enddo
enddo
enddo
! beta/beta/alpha three-body
do i = 1, Ne(2)
ii = occ(i,2)
do j = i+1, Ne(2)
jj = occ(j,2)
do m = 1, Ne(1)
mm = occ(m,1)
!direct_int = three_body_ints_bi_ort(mm,jj,ii,mm,jj,ii) !uses the 6-idx tensor
!exchange_int = three_body_ints_bi_ort(mm,jj,ii,mm,ii,jj) !uses the 6-idx tensor
direct_int = three_e_3_idx_direct_bi_ort(mm,jj,ii)
exchange_int = three_e_3_idx_exch12_bi_ort(mm,jj,ii)
hthree += direct_int - exchange_int
enddo
enddo
enddo
! alpha/alpha/alpha three-body
do i = 1, Ne(1)
ii = occ(i,1) ! 1
do j = i+1, Ne(1)
jj = occ(j,1) ! 2
do m = j+1, Ne(1)
mm = occ(m,1) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
! beta/beta/beta three-body
do i = 1, Ne(2)
ii = occ(i,2) ! 1
do j = i+1, Ne(2)
jj = occ(j,2) ! 2
do m = j+1, Ne(2)
mm = occ(m,2) ! 3
!hthree += sym_3_e_int_from_6_idx_tensor(mm,jj,ii,mm,jj,ii) !uses the 6 idx tensor
hthree += three_e_diag_parrallel_spin(mm,jj,ii) !uses only 3-idx tensors
enddo
enddo
enddo
endif
end
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
!
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
three_e_diag_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
three_e_single_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
integral = three_e_single_parrallel_spin(1,1,1,1)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
three_e_double_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
call wall_time(wall0)
integral = three_e_double_parrallel_spin(1,1,1,1,1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
END_PROVIDER