10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-03 20:53:54 +01:00
QuantumPackage/plugins/local/non_hermit_dav/new_routines.irp.f

671 lines
21 KiB
Fortran

subroutine non_hrmt_diag_split_degen_bi_orthog(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
double precision, allocatable :: S_nh_inv_half(:,:)
allocate(S_nh_inv_half(n,n))
logical :: complex_root
deallocate(S_nh_inv_half)
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp)
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_diag_split_degen_s_inv_half(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1.d0
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
if(complex_root) then
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp) ! orthogonalization of reigvec
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp) ! orthogonalization of leigvec
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ', accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half, complex_root)
if(complex_root)then
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
else ! the matrix S^{-1/2} exists
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_fock_mat(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine returning the eigenvalues and left/right eigenvectors of the TC fock matrix
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
double precision :: thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' Using impose_unique_biorthog_degen_eigvec'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, leigvec_tmp, reigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print*,'accu_nd = ',accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half,complex_root)
if(complex_root)then
print*,'S^{-1/2} does not exits, using QR bi-orthogonalization'
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end