10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-19 04:22:32 +01:00
QuantumPackage/src/mo_optimization/debug_hessian_list_opt.irp.f
2023-06-29 18:31:48 +02:00

148 lines
4.6 KiB
Fortran

! Debug the hessian
! *Program to check the hessian matrix*
! The program compares the result of the first and last code for the
! hessian. First of all the 4D hessian and after the 2D hessian.
! Provided:
! | mo_num | integer | number of MOs |
! | optimization_method | string | Method for the orbital optimization: |
! | | | - 'full' -> full hessian |
! | | | - 'diag' -> diagonal hessian |
! | dim_list_act_orb | integer | number of active MOs |
! | list_act(dim_list_act_orb) | integer | list of the actives MOs |
! | | | |
! Internal:
! | m | integer | number of MOs in the list |
! | | | (active MOs) |
! | n | integer | number of orbitals pairs (p,q) p<q |
! | | | n = m*(m-1)/2 |
! | H(n,n) | double precision | Original hessian matrix (2D) |
! | H2(n,n) | double precision | Hessian matrix (2D) |
! | h_f(mo_num,mo_num,mo_num,mo_num) | double precision | Original hessian matrix (4D) |
! | h_f2(mo_num,mo_num,mo_num,mo_num) | double precision | Hessian matrix (4D) |
! | i,j,p,q,k | integer | indexes |
! | threshold | double precision | threshold for the errors |
! | max_error | double precision | maximal error in the 4D hessian |
! | max_error_H | double precision | maximal error in the 2D hessian |
! | nb_error | integer | number of errors in the 4D hessian |
! | nb_error_H | integer | number of errors in the 2D hessian |
program debug_hessian_list_opt
implicit none
! Variables
double precision, allocatable :: H(:,:),H2(:,:), h_f(:,:,:,:), h_f2(:,:,:,:)
integer :: n,m
integer :: i,j,k,l
double precision :: max_error, max_error_H
integer :: nb_error, nb_error_H
double precision :: threshold
m = dim_list_act_orb !mo_num
! Definition of n
n = m*(m-1)/2
PROVIDE mo_two_e_integrals_in_map
! Hessian
if (optimization_method == 'full') then
print*,'Use the full hessian matrix'
allocate(H(n,n),H2(n,n))
allocate(h_f(m,m,m,m),h_f2(m,m,m,m))
call hessian_list_opt(n,m,list_act,H,h_f)
call first_hessian_list_opt(n,m,list_act,H2,h_f2)
!call hessian_opt(n,H2,h_f2)
! Difference
h_f = h_f - h_f2
H = H - H2
max_error = 0d0
nb_error = 0
threshold = 1d-12
do l = 1, m
do k= 1, m
do j = 1, m
do i = 1, m
if (ABS(h_f(i,j,k,l)) > threshold) then
print*,h_f(i,j,k,l)
nb_error = nb_error + 1
if (ABS(h_f(i,j,k,l)) > ABS(max_error)) then
max_error = h_f(i,j,k,l)
endif
endif
enddo
enddo
enddo
enddo
max_error_H = 0d0
nb_error_H = 0
do j = 1, n
do i = 1, n
if (ABS(H(i,j)) > threshold) then
print*, H(i,j)
nb_error_H = nb_error_H + 1
if (ABS(H(i,j)) > ABS(max_error_H)) then
max_error_H = H(i,j)
endif
endif
enddo
enddo
! Deallocation
deallocate(H, H2, h_f, h_f2)
else
print*, 'Use the diagonal hessian matrix'
allocate(H(n,1),H2(n,1))
call diag_hessian_list_opt(n,m,list_act,H)
call first_diag_hessian_list_opt(n,m,list_act,H2)
H = H - H2
max_error_H = 0d0
nb_error_H = 0
do i = 1, n
if (ABS(H(i,1)) > threshold) then
print*, H(i,1)
nb_error_H = nb_error_H + 1
if (ABS(H(i,1)) > ABS(max_error_H)) then
max_error_H = H(i,1)
endif
endif
enddo
endif
print*,''
if (optimization_method == 'full') then
print*,'Check of the full hessian'
print*,'Threshold:', threshold
print*,'Nb error:', nb_error
print*,'Max error:', max_error
print*,''
else
print*,'Check of the diagonal hessian'
endif
print*,'Nb error_H:', nb_error_H
print*,'Max error_H:', max_error_H
end program