mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-19 12:32:30 +01:00
270 lines
8.1 KiB
Fortran
270 lines
8.1 KiB
Fortran
BEGIN_PROVIDER [ double precision, Fock_matrix_mo, (mo_num,mo_num) ]
|
|
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo, (mo_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis.
|
|
! For open shells, the ROHF Fock Matrix is ::
|
|
!
|
|
! | Rcc | F^b | Fcv |
|
|
! |-----------------------|
|
|
! | F^b | Roo | F^a |
|
|
! |-----------------------|
|
|
! | Fcv | F^a | Rvv |
|
|
!
|
|
! C: Core, O: Open, V: Virtual
|
|
!
|
|
! Rcc = Acc Fcc^a + Bcc Fcc^b
|
|
! Roo = Aoo Foo^a + Boo Foo^b
|
|
! Rvv = Avv Fvv^a + Bvv Fvv^b
|
|
! Fcv = (F^a + F^b)/2
|
|
!
|
|
! F^a: Fock matrix alpha (MO), F^b: Fock matrix beta (MO)
|
|
! A,B: Coupling parameters
|
|
!
|
|
! J. Chem. Phys. 133, 141102 (2010), https://doi.org/10.1063/1.3503173
|
|
! Coupling parameters from J. Chem. Phys. 125, 204110 (2006); https://doi.org/10.1063/1.2393223.
|
|
! cc oo vv
|
|
! A -0.5 0.5 1.5
|
|
! B 1.5 0.5 -0.5
|
|
!
|
|
END_DOC
|
|
integer :: i,j,n
|
|
if (all_shells_closed) then
|
|
Fock_matrix_mo = Fock_matrix_mo_alpha
|
|
else
|
|
! Core
|
|
do j = 1, elec_beta_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
fock_matrix_mo(i,j) = - 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
|
+ 1.5d0 * fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
|
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
enddo
|
|
! Open
|
|
do j = elec_beta_num+1, elec_alpha_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
fock_matrix_mo(i,j) = fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
|
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
|
|
enddo
|
|
enddo
|
|
! Virtual
|
|
do j = elec_alpha_num+1, mo_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
fock_matrix_mo(i,j) = 0.5d0 * fock_matrix_mo_alpha(i,j) &
|
|
+ 0.5d0 * fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
fock_matrix_mo(i,j) = fock_matrix_mo_alpha(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
fock_matrix_mo(i,j) = 1.5d0 * fock_matrix_mo_alpha(i,j) &
|
|
- 0.5d0 * fock_matrix_mo_beta(i,j)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
! Old
|
|
! BEGIN_DOC
|
|
! Fock matrix on the MO basis.
|
|
! For open shells, the ROHF Fock Matrix is ::
|
|
!
|
|
! | F-K | F + K/2 | F |
|
|
! |---------------------------------|
|
|
! | F + K/2 | F | F - K/2 |
|
|
! |---------------------------------|
|
|
! | F | F - K/2 | F + K |
|
|
!
|
|
!
|
|
! F = 1/2 (Fa + Fb)
|
|
!
|
|
! K = Fb - Fa
|
|
!
|
|
! END_DOC
|
|
!integer :: i,j,n
|
|
!if (all_shells_closed) then
|
|
! Fock_matrix_mo = Fock_matrix_mo_alpha
|
|
!else
|
|
|
|
! do j=1,elec_beta_num
|
|
! ! F-K
|
|
! do i=1,elec_beta_num !CC
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
! - (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! ! F+K/2
|
|
! do i=elec_beta_num+1,elec_alpha_num !CA
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! ! F
|
|
! do i=elec_alpha_num+1, mo_num !CV
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
! enddo
|
|
! enddo
|
|
|
|
! do j=elec_beta_num+1,elec_alpha_num
|
|
! ! F+K/2
|
|
! do i=1,elec_beta_num !AC
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
! + 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! ! F
|
|
! do i=elec_beta_num+1,elec_alpha_num !AA
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
! enddo
|
|
! ! F-K/2
|
|
! do i=elec_alpha_num+1, mo_num !AV
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! enddo
|
|
|
|
! do j=elec_alpha_num+1, mo_num
|
|
! ! F
|
|
! do i=1,elec_beta_num !VC
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))
|
|
! enddo
|
|
! ! F-K/2
|
|
! do i=elec_beta_num+1,elec_alpha_num !VA
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j))&
|
|
! - 0.5d0*(Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! ! F+K
|
|
! do i=elec_alpha_num+1,mo_num !VV
|
|
! Fock_matrix_mo(i,j) = 0.5d0*(Fock_matrix_mo_alpha(i,j)+Fock_matrix_mo_beta(i,j)) &
|
|
! + (Fock_matrix_mo_beta(i,j) - Fock_matrix_mo_alpha(i,j))
|
|
! enddo
|
|
! enddo
|
|
|
|
!endif
|
|
|
|
do i = 1, mo_num
|
|
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
|
|
enddo
|
|
|
|
|
|
if(frozen_orb_scf)then
|
|
integer :: iorb,jorb
|
|
! active|core|active
|
|
!active | | 0 |
|
|
!core | 0 | | 0
|
|
!active | | 0 |
|
|
do i = 1, n_core_orb
|
|
iorb = list_core(i)
|
|
do j = 1, n_act_orb
|
|
jorb = list_act(j)
|
|
Fock_matrix_mo(iorb,jorb) = 0.d0
|
|
Fock_matrix_mo(jorb,iorb) = 0.d0
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
if(no_oa_or_av_opt)then
|
|
do i = 1, n_act_orb
|
|
iorb = list_act(i)
|
|
do j = 1, n_inact_orb
|
|
jorb = list_inact(j)
|
|
Fock_matrix_mo(iorb,jorb) = 0.d0
|
|
Fock_matrix_mo(jorb,iorb) = 0.d0
|
|
enddo
|
|
do j = 1, n_virt_orb
|
|
jorb = list_virt(j)
|
|
Fock_matrix_mo(iorb,jorb) = 0.d0
|
|
Fock_matrix_mo(jorb,iorb) = 0.d0
|
|
enddo
|
|
do j = 1, n_core_orb
|
|
jorb = list_core(j)
|
|
Fock_matrix_mo(iorb,jorb) = 0.d0
|
|
Fock_matrix_mo(jorb,iorb) = 0.d0
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_alpha, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis
|
|
END_DOC
|
|
call ao_to_mo(Fock_matrix_ao_alpha,size(Fock_matrix_ao_alpha,1), &
|
|
Fock_matrix_mo_alpha,size(Fock_matrix_mo_alpha,1))
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_mo_beta, (mo_num,mo_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix on the MO basis
|
|
END_DOC
|
|
call ao_to_mo(Fock_matrix_ao_beta,size(Fock_matrix_ao_beta,1), &
|
|
Fock_matrix_mo_beta,size(Fock_matrix_mo_beta,1))
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, Fock_matrix_ao, (ao_num, ao_num) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Fock matrix in AO basis set
|
|
END_DOC
|
|
|
|
if(frozen_orb_scf)then
|
|
call mo_to_ao(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
|
Fock_matrix_ao,size(Fock_matrix_ao,1))
|
|
else
|
|
if (all_shells_closed.and. (level_shift == 0.)) then
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
Fock_matrix_ao(i,j) = Fock_matrix_ao_alpha(i,j)
|
|
enddo
|
|
enddo
|
|
else
|
|
call mo_to_ao(Fock_matrix_mo,size(Fock_matrix_mo,1), &
|
|
Fock_matrix_ao,size(Fock_matrix_ao,1))
|
|
endif
|
|
endif
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, SCF_energy ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Hartree-Fock energy
|
|
END_DOC
|
|
SCF_energy = nuclear_repulsion
|
|
|
|
integer :: i,j
|
|
do j=1,ao_num
|
|
do i=1,ao_num
|
|
SCF_energy += 0.5d0 * ( &
|
|
(ao_one_e_integrals(i,j) + Fock_matrix_ao_alpha(i,j) ) * SCF_density_matrix_ao_alpha(i,j) +&
|
|
(ao_one_e_integrals(i,j) + Fock_matrix_ao_beta (i,j) ) * SCF_density_matrix_ao_beta (i,j) )
|
|
enddo
|
|
enddo
|
|
SCF_energy += extra_e_contrib_density
|
|
|
|
END_PROVIDER
|
|
|