mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-25 03:51:55 +01:00
1310 lines
30 KiB
ReStructuredText
1310 lines
30 KiB
ReStructuredText
.. _module_dft_one_e:
|
|
|
|
.. program:: dft_one_e
|
|
|
|
.. default-role:: option
|
|
|
|
dft_one_e
|
|
=========
|
|
|
|
This module defines the most important providers needed for the |DFT| and |RSDFT| calculations:
|
|
|
|
* :c:data:`energy_x` and :c:data:`energy_c` : the *exchange* and *correlation* energy functionals (see :file:`e_xc_general.irp.f`)
|
|
|
|
* :c:data:`potential_x_alpha_ao` and :c:data:`potential_x_beta_ao` : the exchange potential for alpha/beta electrons (see :file:`pot_general.irp.f`)
|
|
|
|
* :c:data:`potential_c_alpha_ao` and :c:data:`potential_c_beta_ao` : the correlation potential for alpha/beta electrons (see :file:`pot_general.irp.f`)
|
|
|
|
|
|
These providers are then used in the :ref:`ks_scf` and :ref:`rs_ks_scf` programs, together within some |RSDFT| external
|
|
plugins (see `<https://gitlab.com/eginer/qp_plugins_eginer>`_).
|
|
|
|
The flexibility of the functionals is handle by the two following keywords (see :ref:`module_dft_keywords`):
|
|
|
|
* :option:`dft_keywords exchange_functional` : defines which *exchange* functionals will be set
|
|
|
|
* :option:`dft_keywords correlation_functional` : defines which *correlation* functionals will be set
|
|
|
|
|
|
In the core modules of the |QP|, two functionals are implemented:
|
|
|
|
* "LDA" or "short_range_LDA" for, respectively the |LDA| and its short-range version
|
|
|
|
* "PBE" or "short_range_PBE" for, respectively the |PBE| and its short-range version
|
|
|
|
|
|
|
|
|
|
|
|
Providers
|
|
---------
|
|
|
|
.. c:var:: ao_effective_one_e_potential
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: ao_effective_one_e_potential (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: ao_effective_one_e_potential_without_kin (ao_num,ao_num,N_states)
|
|
|
|
|
|
Effective_one_e_potential(i,j) = :math:`\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle`
|
|
|
|
on the |MO| basis
|
|
|
|
Taking the expectation value does not provide any energy, but
|
|
|
|
ao_effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
|
|
|
and it is used in any RS-DFT based calculations
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`s_mo_coef`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential_sa`
|
|
|
|
|
|
.. c:var:: ao_effective_one_e_potential_sa
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: ao_effective_one_e_potential_sa (ao_num,ao_num)
|
|
double precision, allocatable :: ao_effective_one_e_potential_without_kin_sa (ao_num,ao_num)
|
|
|
|
|
|
State-averaged potential in AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential`
|
|
* :c:data:`ao_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`state_average_weight`
|
|
|
|
|
|
|
|
.. c:var:: ao_effective_one_e_potential_without_kin
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: ao_effective_one_e_potential (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: ao_effective_one_e_potential_without_kin (ao_num,ao_num,N_states)
|
|
|
|
|
|
Effective_one_e_potential(i,j) = :math:`\rangle i_{AO}| v_{H}^{sr} |j_{AO}\rangle + \rangle i_{AO}| h_{core} |j_{AO}\rangle + \rangle i_{AO}|v_{xc} |j_{AO}\rangle`
|
|
|
|
on the |MO| basis
|
|
|
|
Taking the expectation value does not provide any energy, but
|
|
|
|
ao_effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
|
|
|
and it is used in any RS-DFT based calculations
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`s_mo_coef`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential_sa`
|
|
|
|
|
|
.. c:var:: ao_effective_one_e_potential_without_kin_sa
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: ao_effective_one_e_potential_sa (ao_num,ao_num)
|
|
double precision, allocatable :: ao_effective_one_e_potential_without_kin_sa (ao_num,ao_num)
|
|
|
|
|
|
State-averaged potential in AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential`
|
|
* :c:data:`ao_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`state_average_weight`
|
|
|
|
|
|
|
|
.. c:var:: effective_one_e_potential
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: effective_one_e_potential (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: effective_one_e_potential_without_kin (mo_num,mo_num,N_states)
|
|
|
|
|
|
Effective_one_e_potential(i,j) = :math:`\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle`
|
|
|
|
on the |MO| basis
|
|
|
|
Taking the expectation value does not provide any energy, but
|
|
|
|
effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
|
|
|
and it is used in any RS-DFT based calculations
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_integrals_n_e`
|
|
* :c:data:`mo_kinetic_integrals`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
* :c:data:`short_range_hartree_operator`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential`
|
|
* :c:data:`effective_one_e_potential_sa`
|
|
|
|
|
|
.. c:var:: effective_one_e_potential_sa
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: effective_one_e_potential_sa (mo_num,mo_num)
|
|
double precision, allocatable :: effective_one_e_potential_without_kin_sa (mo_num,mo_num)
|
|
|
|
|
|
State-averaged potential in MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`state_average_weight`
|
|
|
|
|
|
|
|
.. c:var:: effective_one_e_potential_without_kin
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: effective_one_e_potential (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: effective_one_e_potential_without_kin (mo_num,mo_num,N_states)
|
|
|
|
|
|
Effective_one_e_potential(i,j) = :math:`\rangle i_{MO}| v_{H}^{sr} |j_{MO}\rangle + \rangle i_{MO}| h_{core} |j_{MO}\rangle + \rangle i_{MO}|v_{xc} |j_{MO}\rangle`
|
|
|
|
on the |MO| basis
|
|
|
|
Taking the expectation value does not provide any energy, but
|
|
|
|
effective_one_e_potential(i,j) is the potential coupling DFT and WFT parts
|
|
|
|
and it is used in any RS-DFT based calculations
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_integrals_n_e`
|
|
* :c:data:`mo_kinetic_integrals`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
* :c:data:`short_range_hartree_operator`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_effective_one_e_potential`
|
|
* :c:data:`effective_one_e_potential_sa`
|
|
|
|
|
|
.. c:var:: effective_one_e_potential_without_kin_sa
|
|
|
|
|
|
File : :file:`dft_one_e/effective_pot.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: effective_one_e_potential_sa (mo_num,mo_num)
|
|
double precision, allocatable :: effective_one_e_potential_without_kin_sa (mo_num,mo_num)
|
|
|
|
|
|
State-averaged potential in MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`state_average_weight`
|
|
|
|
|
|
|
|
.. c:var:: energy_c
|
|
|
|
|
|
File : :file:`dft_one_e/e_xc_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: energy_c (N_states)
|
|
|
|
|
|
correlation and exchange energies general providers.
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`correlation_functional`
|
|
* :c:data:`energy_c_lda`
|
|
* :c:data:`energy_c_none`
|
|
* :c:data:`energy_c_sr_lda`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`energy_x_sr_pbe`
|
|
* :c:data:`n_states`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`e_correlation_dft`
|
|
|
|
|
|
.. c:var:: energy_x
|
|
|
|
|
|
File : :file:`dft_one_e/e_xc_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: energy_x (N_states)
|
|
|
|
|
|
correlation energies general providers.
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`energy_x_lda`
|
|
* :c:data:`energy_x_none`
|
|
* :c:data:`energy_x_pbe`
|
|
* :c:data:`energy_x_sr_lda`
|
|
* :c:data:`energy_x_sr_pbe`
|
|
* :c:data:`exchange_functional`
|
|
* :c:data:`hf_exchange`
|
|
* :c:data:`n_states`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`e_exchange_dft`
|
|
|
|
|
|
.. c:var:: mu_erf_dft
|
|
|
|
|
|
File : :file:`dft_one_e/mu_erf_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision :: mu_erf_dft
|
|
|
|
|
|
range separation parameter used in RS-DFT.
|
|
|
|
It is set to mu_erf in order to be consistent with the module "hamiltonian"
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mu_erf`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mu_of_r_dft`
|
|
|
|
|
|
.. c:var:: mu_grad_rho
|
|
|
|
|
|
File : :file:`dft_one_e/mu_erf_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: mu_grad_rho (n_points_final_grid)
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`mu_erf`
|
|
* :c:data:`n_points_final_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mu_of_r_dft`
|
|
|
|
|
|
.. c:var:: mu_of_r_dft
|
|
|
|
|
|
File : :file:`dft_one_e/mu_erf_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: mu_of_r_dft (n_points_final_grid)
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mu_dft_type`
|
|
* :c:data:`mu_erf_dft`
|
|
* :c:data:`mu_grad_rho`
|
|
* :c:data:`mu_of_r_hf`
|
|
* :c:data:`mu_rsc_of_r`
|
|
* :c:data:`n_points_final_grid`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`aos_sr_vc_alpha_lda_w`
|
|
* :c:data:`aos_sr_vxc_alpha_lda_w`
|
|
* :c:data:`aos_vc_alpha_sr_pbe_w`
|
|
* :c:data:`aos_vxc_alpha_sr_pbe_w`
|
|
* :c:data:`energy_c_sr_lda`
|
|
* :c:data:`energy_x_sr_lda`
|
|
* :c:data:`energy_x_sr_pbe`
|
|
* :c:data:`mu_of_r_dft_average`
|
|
|
|
|
|
.. c:var:: mu_of_r_dft_average
|
|
|
|
|
|
File : :file:`dft_one_e/mu_erf_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision :: mu_of_r_dft_average
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`elec_alpha_num`
|
|
* :c:data:`elec_beta_num`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`mu_of_r_dft`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_alpha_ao_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: mu_rsc_of_r
|
|
|
|
|
|
File : :file:`dft_one_e/mu_erf_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: mu_rsc_of_r (n_points_final_grid)
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`final_grid_points`
|
|
* :c:data:`n_points_final_grid`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_alpha_ao_for_dft`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mu_of_r_dft`
|
|
|
|
|
|
.. c:var:: potential_c_alpha_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_c_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_c_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta correlation potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`correlation_functional`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_ao_lda`
|
|
* :c:data:`potential_c_alpha_ao_none`
|
|
* :c:data:`potential_c_alpha_ao_sr_lda`
|
|
* :c:data:`potential_c_beta_ao_none`
|
|
* :c:data:`potential_x_alpha_ao_pbe`
|
|
* :c:data:`potential_x_alpha_ao_sr_pbe`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_c_alpha_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_c_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_c_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta correlation potentials on the MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: potential_c_beta_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_c_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_c_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta correlation potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`correlation_functional`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_ao_lda`
|
|
* :c:data:`potential_c_alpha_ao_none`
|
|
* :c:data:`potential_c_alpha_ao_sr_lda`
|
|
* :c:data:`potential_c_beta_ao_none`
|
|
* :c:data:`potential_x_alpha_ao_pbe`
|
|
* :c:data:`potential_x_alpha_ao_sr_pbe`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_c_beta_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_c_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_c_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta correlation potentials on the MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_c_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: potential_x_alpha_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_x_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_x_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`exchange_functional`
|
|
* :c:data:`hf_exchange`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_x_alpha_ao_lda`
|
|
* :c:data:`potential_x_alpha_ao_none`
|
|
* :c:data:`potential_x_alpha_ao_pbe`
|
|
* :c:data:`potential_x_alpha_ao_sr_lda`
|
|
* :c:data:`potential_x_alpha_ao_sr_pbe`
|
|
* :c:data:`potential_x_beta_ao_none`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_x_alpha_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_x_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_x_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange potentials on the MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_x_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: potential_x_beta_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_x_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_x_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`exchange_functional`
|
|
* :c:data:`hf_exchange`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_x_alpha_ao_lda`
|
|
* :c:data:`potential_x_alpha_ao_none`
|
|
* :c:data:`potential_x_alpha_ao_pbe`
|
|
* :c:data:`potential_x_alpha_ao_sr_lda`
|
|
* :c:data:`potential_x_alpha_ao_sr_pbe`
|
|
* :c:data:`potential_x_beta_ao_none`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_x_beta_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_x_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_x_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange potentials on the MO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_x_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: potential_xc_alpha_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_xc_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_xc_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange/correlation potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`exchange_functional`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_xc_alpha_ao_lda`
|
|
* :c:data:`potential_xc_alpha_ao_none`
|
|
* :c:data:`potential_xc_alpha_ao_pbe`
|
|
* :c:data:`potential_xc_alpha_ao_sr_lda`
|
|
* :c:data:`potential_xc_alpha_ao_sr_pbe`
|
|
* :c:data:`potential_xc_beta_ao_none`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_xc_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_xc_alpha_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_xc_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_xc_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_xc_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`trace_v_xc_new`
|
|
|
|
|
|
.. c:var:: potential_xc_beta_ao
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_xc_alpha_ao (ao_num,ao_num,N_states)
|
|
double precision, allocatable :: potential_xc_beta_ao (ao_num,ao_num,N_states)
|
|
|
|
|
|
general providers for the alpha/beta exchange/correlation potentials on the AO basis
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`exchange_functional`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_xc_alpha_ao_lda`
|
|
* :c:data:`potential_xc_alpha_ao_none`
|
|
* :c:data:`potential_xc_alpha_ao_pbe`
|
|
* :c:data:`potential_xc_alpha_ao_sr_lda`
|
|
* :c:data:`potential_xc_alpha_ao_sr_pbe`
|
|
* :c:data:`potential_xc_beta_ao_none`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_potential_alpha_xc`
|
|
* :c:data:`potential_xc_alpha_mo`
|
|
|
|
|
|
.. c:var:: potential_xc_beta_mo
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: potential_xc_alpha_mo (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: potential_xc_beta_mo (mo_num,mo_num,N_states)
|
|
|
|
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`ao_num`
|
|
* :c:data:`mo_coef`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`potential_xc_alpha_ao`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`trace_v_xc_new`
|
|
|
|
|
|
.. c:var:: psi_dft_energy_h_core
|
|
|
|
|
|
File : :file:`dft_one_e/one_e_energy_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
|
|
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
|
|
double precision, allocatable :: psi_dft_energy_h_core (N_states)
|
|
|
|
|
|
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`elec_alpha_num`
|
|
* :c:data:`elec_beta_num`
|
|
* :c:data:`mo_integrals_n_e`
|
|
* :c:data:`mo_kinetic_integrals`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: psi_dft_energy_kinetic
|
|
|
|
|
|
File : :file:`dft_one_e/one_e_energy_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
|
|
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
|
|
double precision, allocatable :: psi_dft_energy_h_core (N_states)
|
|
|
|
|
|
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`elec_alpha_num`
|
|
* :c:data:`elec_beta_num`
|
|
* :c:data:`mo_integrals_n_e`
|
|
* :c:data:`mo_kinetic_integrals`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: psi_dft_energy_nuclear_elec
|
|
|
|
|
|
File : :file:`dft_one_e/one_e_energy_dft.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: psi_dft_energy_kinetic (N_states)
|
|
double precision, allocatable :: psi_dft_energy_nuclear_elec (N_states)
|
|
double precision, allocatable :: psi_dft_energy_h_core (N_states)
|
|
|
|
|
|
kinetic, electron-nuclear and total h_core energy computed with the density matrix one_e_dm_mo_beta_for_dft+one_e_dm_mo_alpha_for_dft
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`elec_alpha_num`
|
|
* :c:data:`elec_beta_num`
|
|
* :c:data:`mo_integrals_n_e`
|
|
* :c:data:`mo_kinetic_integrals`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: regular_range_hartree
|
|
|
|
|
|
File : :file:`dft_one_e/sr_coulomb.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: regular_range_hartree_operator (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: regular_range_hartree (N_states)
|
|
|
|
|
|
regular_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
|
|
|
|
regular_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{regular_range_Hartree_operator}(i,j)`
|
|
|
|
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`cholesky_mo_num`
|
|
* :c:data:`cholesky_mo_transp`
|
|
* :c:data:`do_mo_cholesky`
|
|
* :c:data:`mo_integrals_cache_min`
|
|
* :c:data:`mo_integrals_map`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`mo_two_e_integrals_in_map`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_average_mo_for_dft`
|
|
* :c:data:`one_e_dm_mo_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: regular_range_hartree_operator
|
|
|
|
|
|
File : :file:`dft_one_e/sr_coulomb.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: regular_range_hartree_operator (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: regular_range_hartree (N_states)
|
|
|
|
|
|
regular_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
|
|
|
|
regular_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{regular_range_Hartree_operator}(i,j)`
|
|
|
|
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`cholesky_mo_num`
|
|
* :c:data:`cholesky_mo_transp`
|
|
* :c:data:`do_mo_cholesky`
|
|
* :c:data:`mo_integrals_cache_min`
|
|
* :c:data:`mo_integrals_map`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`mo_two_e_integrals_in_map`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_average_mo_for_dft`
|
|
* :c:data:`one_e_dm_mo_for_dft`
|
|
|
|
|
|
|
|
.. c:var:: short_range_hartree
|
|
|
|
|
|
File : :file:`dft_one_e/sr_coulomb.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: short_range_hartree_operator (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: short_range_hartree (N_states)
|
|
|
|
|
|
short_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
|
|
|
|
short_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)`
|
|
|
|
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`cholesky_mo_num`
|
|
* :c:data:`cholesky_mo_transp`
|
|
* :c:data:`do_mo_cholesky`
|
|
* :c:data:`mo_integrals_cache_min`
|
|
* :c:data:`mo_integrals_erf_map`
|
|
* :c:data:`mo_integrals_map`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`mo_two_e_integrals_erf_in_map`
|
|
* :c:data:`mo_two_e_integrals_in_map`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_average_mo_for_dft`
|
|
* :c:data:`one_e_dm_mo_for_dft`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: short_range_hartree_operator
|
|
|
|
|
|
File : :file:`dft_one_e/sr_coulomb.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: short_range_hartree_operator (mo_num,mo_num,N_states)
|
|
double precision, allocatable :: short_range_hartree (N_states)
|
|
|
|
|
|
short_range_Hartree_operator(i,j) = :math:`\int dr i(r)j(r) \int r' \rho(r') W_{ee}^{sr}`
|
|
|
|
short_range_Hartree = :math:`1/2 \sum_{i,j} \rho_{ij} \mathtt{short_range_Hartree_operator}(i,j)`
|
|
|
|
= :math:`1/2 \int dr \int r' \rho(r) \rho(r') W_{ee}^{sr}`
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`cholesky_mo_num`
|
|
* :c:data:`cholesky_mo_transp`
|
|
* :c:data:`do_mo_cholesky`
|
|
* :c:data:`mo_integrals_cache_min`
|
|
* :c:data:`mo_integrals_erf_map`
|
|
* :c:data:`mo_integrals_map`
|
|
* :c:data:`mo_num`
|
|
* :c:data:`mo_two_e_integrals_erf_in_map`
|
|
* :c:data:`mo_two_e_integrals_in_map`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_average_mo_for_dft`
|
|
* :c:data:`one_e_dm_mo_for_dft`
|
|
|
|
Needed by:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`effective_one_e_potential`
|
|
* :c:data:`trace_v_xc`
|
|
|
|
|
|
.. c:var:: trace_v_h
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: trace_v_xc (N_states)
|
|
double precision, allocatable :: trace_v_h (N_states)
|
|
double precision, allocatable :: trace_v_hxc (N_states)
|
|
|
|
|
|
Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta)
|
|
Trace_v_Hxc = \sum_{i,j} v^{H}_{ij} (rho_{ij}_\alpha + rho_{ij}_\beta)
|
|
Trace_v_Hxc = \sum_{i,j} rho_{ij} v^{Hxc}_{ij}
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
* :c:data:`short_range_hartree_operator`
|
|
|
|
|
|
|
|
.. c:var:: trace_v_hxc
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: trace_v_xc (N_states)
|
|
double precision, allocatable :: trace_v_h (N_states)
|
|
double precision, allocatable :: trace_v_hxc (N_states)
|
|
|
|
|
|
Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta)
|
|
Trace_v_Hxc = \sum_{i,j} v^{H}_{ij} (rho_{ij}_\alpha + rho_{ij}_\beta)
|
|
Trace_v_Hxc = \sum_{i,j} rho_{ij} v^{Hxc}_{ij}
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
* :c:data:`short_range_hartree_operator`
|
|
|
|
|
|
|
|
.. c:var:: trace_v_xc
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: trace_v_xc (N_states)
|
|
double precision, allocatable :: trace_v_h (N_states)
|
|
double precision, allocatable :: trace_v_hxc (N_states)
|
|
|
|
|
|
Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta)
|
|
Trace_v_Hxc = \sum_{i,j} v^{H}_{ij} (rho_{ij}_\alpha + rho_{ij}_\beta)
|
|
Trace_v_Hxc = \sum_{i,j} rho_{ij} v^{Hxc}_{ij}
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
* :c:data:`potential_c_alpha_mo`
|
|
* :c:data:`potential_x_alpha_mo`
|
|
* :c:data:`short_range_hartree_operator`
|
|
|
|
|
|
|
|
.. c:var:: trace_v_xc_new
|
|
|
|
|
|
File : :file:`dft_one_e/pot_general.irp.f`
|
|
|
|
.. code:: fortran
|
|
|
|
double precision, allocatable :: trace_v_xc_new (N_states)
|
|
|
|
|
|
Trace_v_xc = \sum_{i,j} (rho_{ij}_\alpha v^{xc}_{ij}^\alpha + rho_{ij}_\beta v^{xc}_{ij}^\beta)
|
|
|
|
Needs:
|
|
|
|
.. hlist::
|
|
:columns: 3
|
|
|
|
* :c:data:`mo_num`
|
|
* :c:data:`n_states`
|
|
* :c:data:`one_e_dm_mo_alpha_for_dft`
|
|
* :c:data:`one_e_dm_mo_beta_for_dft`
|
|
* :c:data:`potential_xc_alpha_mo`
|
|
|
|
|