10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-04-28 11:14:56 +02:00
QuantumPackage/src/mu_of_r/mu_of_r_mean_field.irp.f
2024-09-05 22:01:22 +02:00

167 lines
5.1 KiB
Fortran

BEGIN_PROVIDER [ double precision, two_e_int_mf, (elec_beta_num,elec_alpha_num,elec_beta_num,elec_alpha_num)]
implicit none
integer :: i,j,k,l
double precision :: get_two_e_integral
do i = 1, elec_alpha_num
do j = 1, elec_beta_num
do k = 1, elec_alpha_num
do l = 1, elec_beta_num
two_e_int_mf(l,k,j,i) = get_two_e_integral(l,k,j,i,mo_integrals_map)
enddo
enddo
enddo
enddo
END_PROVIDER
subroutine get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out):: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision, allocatable :: mos_array_r(:),mos_array_a(:), mos_array_b(:)
integer :: i,j,k,l
allocate(mos_array_r(mo_num), mos_array_a(elec_alpha_num), mos_array_b(elec_alpha_num))
call give_all_mos_at_r(r,mos_array_r)
do i = 1, elec_alpha_num
mos_array_a(i) = mos_array_r(i)
enddo
do i = 1, elec_beta_num
mos_array_b(i) = mos_array_r(i)
enddo
dm_a = 0.d0
do i = 1, elec_alpha_num
dm_a += mos_array_a(i) * mos_array_a(i)
enddo
dm_b = 0.d0
do i = 1, elec_beta_num
dm_b += mos_array_b(i) * mos_array_b(i)
enddo
two_bod_dens = dm_a * dm_b
f_mf_ab = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_beta_num
do k = 1, elec_alpha_num
do l = 1, elec_beta_num
f_mf_ab += two_e_int_mf(l,k,j,i) * mos_array_a(i) * mos_array_a(k) * mos_array_b(j) * mos_array_b(l)
enddo
enddo
enddo
enddo
! multiply by two to adapt to the N(N-1) normalization condition of the active two-rdm
f_mf_ab *= 2.d0
two_bod_dens *= 2.d0
end
subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
implicit none
BEGIN_DOC
! gradient of mu(r) mean field, together with the gradient of the one- and two-body HF density.
END_DOC
double precision, intent(in) :: r(3)
double precision, intent(out) :: f_mf_ab, two_bod_dens
double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3)
double precision, intent(out) :: dm_a, dm_b, grad_dm_a(3), grad_dm_b(3)
double precision, allocatable :: mos_array_r(:), mos_grad_array_r(:,:)
double precision, allocatable :: mos_array_a(:), mos_array_b(:)
double precision, allocatable :: mos_grad_array_a(:,:), mos_grad_array_b(:,:)
double precision :: mo_i, mo_j, mo_k, mo_l
double precision :: grad_mo_i(3), grad_mo_j(3), grad_mo_k(3), grad_mo_l(3)
integer :: i,j,k,l
allocate(mos_array_r(mo_num),mos_grad_array_r(3,mo_num))
allocate(mos_array_a(elec_alpha_num), mos_array_b(elec_beta_num))
allocate(mos_grad_array_a(3,elec_alpha_num), mos_grad_array_b(3,elec_beta_num))
call give_all_mos_and_grad_at_r(r,mos_array_r,mos_grad_array_r)
do i = 1, elec_alpha_num
mos_array_a(i) = mos_array_r(i)
mos_grad_array_a(1:3,i) = mos_grad_array_r(1:3,i)
enddo
do i = 1, elec_beta_num
mos_array_b(i) = mos_array_r(i)
mos_grad_array_b(1:3,i) = mos_grad_array_r(1:3,i)
enddo
! ALPHA DENSITY AND GRADIENT
dm_a = 0.d0
grad_dm_a = 0.d0
do i = 1, elec_alpha_num
dm_a += mos_array_a(i) * mos_array_a(i)
grad_dm_a(1:3) += 2.d0 * mos_array_a(i) * mos_grad_array_a(1:3,i)
enddo
! BETA DENSITY AND GRADIENT
dm_b = 0.d0
grad_dm_b = 0.d0
do i = 1, elec_beta_num
dm_b += mos_array_b(i) * mos_array_b(i)
grad_dm_b(1:3) += 2.d0 * mos_array_b(i) * mos_grad_array_b(1:3,i)
enddo
! TWO-BODY DENSITY AND GRADIENT
two_bod_dens = dm_a * dm_b
grad_two_bod_dens(1:3) = dm_a * grad_dm_b(1:3) + dm_b * grad_dm_a(1:3)
! F_MF and GRADIENT
grad_f_mf_ab = 0.d0
f_mf_ab = 0.d0
do i = 1, elec_alpha_num
mo_i = mos_array_a(i)
grad_mo_i(1:3) = mos_grad_array_a(1:3,i)
do j = 1, elec_beta_num
mo_j = mos_array_b(j)
grad_mo_j(1:3) = mos_grad_array_b(1:3,j)
do k = 1, elec_alpha_num
mo_k = mos_array_a(k)
grad_mo_k(1:3) = mos_grad_array_a(1:3,k)
do l = 1, elec_beta_num
mo_l = mos_array_b(l)
grad_mo_l(1:3) = mos_grad_array_b(1:3,l)
f_mf_ab += two_e_int_mf(l,k,j,i) * mo_i * mo_j * mo_k * mo_l
grad_f_mf_ab(1:3) += two_e_int_mf(l,k,j,i) * &
(mo_i * mo_j * mo_k * grad_mo_l(1:3) + mo_i * mo_j * grad_mo_k(1:3) * mo_l &
+mo_i * grad_mo_j(1:3) * mo_k * mo_l + grad_mo_i(1:3) * mo_j * mo_k * mo_l)
enddo
enddo
enddo
enddo
f_mf_ab *= 2.d0
two_bod_dens *= 2.d0
grad_f_mf_ab *= 2.D0
grad_two_bod_dens *= 2.d0
end
subroutine mu_of_r_mean_field(r,mu_mf, dm)
implicit none
include 'constants.include.F'
double precision, intent(in) :: r(3)
double precision, intent(out):: mu_mf, dm
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
dm = dm_a + dm_b
if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10
else
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
endif
end
subroutine mu_of_r_mean_field_tc(r,mu_mf, dm)
implicit none
include 'constants.include.F'
double precision, intent(in) :: r(3)
double precision, intent(out):: mu_mf, dm
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
dm = dm_a + dm_b
if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10
else
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
endif
end