10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-07-05 19:06:05 +02:00
QuantumPackage/src/mu_of_r/f_hf_cholesky.irp.f

321 lines
11 KiB
Fortran

BEGIN_PROVIDER [integer, list_couple_hf_orb_r1, (2,n_couple_orb_r1)]
implicit none
integer :: ii,i,mm,m,itmp
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
list_couple_hf_orb_r1(1,itmp) = i
list_couple_hf_orb_r1(2,itmp) = m
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, list_couple_hf_orb_r2, (2,n_couple_orb_r2)]
implicit none
integer :: ii,i,mm,m,itmp
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
list_couple_hf_orb_r2(1,itmp) = i
list_couple_hf_orb_r2(2,itmp) = m
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, n_couple_orb_r1]
implicit none
BEGIN_DOC
! number of couples of alpha occupied times any basis orbital
END_DOC
n_couple_orb_r1 = n_occ_val_orb_for_hf(1) * n_basis_orb
END_PROVIDER
BEGIN_PROVIDER [integer, n_couple_orb_r2]
implicit none
BEGIN_DOC
! number of couples of beta occupied times any basis orbital
END_DOC
n_couple_orb_r2 = n_occ_val_orb_for_hf(2) * n_basis_orb
END_PROVIDER
BEGIN_PROVIDER [ double precision, mos_times_cholesky_r1, (cholesky_mo_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point
!
! here Phi_IR is phi_i(R)xphi_b(R) for r1 and V_AI = (ib|A) chollesky vector
END_DOC
double precision, allocatable :: mos_ib_r1(:,:),mo_chol_r1(:,:)
double precision, allocatable :: test(:,:)
double precision :: mo_i_r1,mo_b_r1
integer :: ii,i,mm,m,itmp,ipoint,ll
allocate(mos_ib_r1(n_couple_orb_r1,n_points_final_grid))
allocate(mo_chol_r1(cholesky_mo_num,n_couple_orb_r1))
do ipoint = 1, n_points_final_grid
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
mo_i_r1 = mos_in_r_array_omp(i,ipoint)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r1 = mos_in_r_array_omp(m,ipoint)
itmp += 1
mos_ib_r1(itmp,ipoint) = mo_i_r1 * mo_b_r1
enddo
enddo
enddo
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
do ll = 1, cholesky_mo_num
mo_chol_r1(ll,itmp) = cholesky_mo_transp(ll,m,i)
enddo
enddo
enddo
call get_AB_prod(mo_chol_r1,cholesky_mo_num,n_couple_orb_r1,mos_ib_r1,n_points_final_grid,mos_times_cholesky_r1)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mos_times_cholesky_r2, (cholesky_mo_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point
!
! here Phi_IR is phi_i(R)xphi_b(R) for r2 and V_AI = (ib|A) chollesky vector
END_DOC
double precision, allocatable :: mos_ib_r2(:,:),mo_chol_r2(:,:)
double precision, allocatable :: test(:,:)
double precision :: mo_i_r2,mo_b_r2
integer :: ii,i,mm,m,itmp,ipoint,ll
allocate(mos_ib_r2(n_couple_orb_r2,n_points_final_grid))
allocate(mo_chol_r2(cholesky_mo_num,n_couple_orb_r2))
do ipoint = 1, n_points_final_grid
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
mo_i_r2 = mos_in_r_array_omp(i,ipoint)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r2 = mos_in_r_array_omp(m,ipoint)
itmp += 1
mos_ib_r2(itmp,ipoint) = mo_i_r2 * mo_b_r2
enddo
enddo
enddo
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
do ll = 1, cholesky_mo_num
mo_chol_r2(ll,itmp) = cholesky_mo_transp(ll,m,i)
enddo
enddo
enddo
call get_AB_prod(mo_chol_r2,cholesky_mo_num,n_couple_orb_r2,mos_ib_r2,n_points_final_grid,mos_times_cholesky_r2)
END_PROVIDER
BEGIN_PROVIDER [ double precision, f_hf_cholesky, (n_points_final_grid)]
implicit none
integer :: ipoint,m,k
!!f(R) = \sum_{I} \sum_{J} Phi_I(R) Phi_J(R) V_IJ
!! = \sum_{I}\sum_{J}\sum_A Phi_I(R) Phi_J(R) V_AI V_AJ
!! = \sum_A \sum_{I}Phi_I(R)V_AI \sum_{J}V_AJ Phi_J(R)
!! = \sum_A V_AR G_AR
!! V_AR = \sum_{I}Phi_IR V_AI = \sum_{I}Phi^t_RI V_AI
double precision :: u_dot_v,wall0,wall1
if(elec_alpha_num == elec_beta_num)then
print*,'providing f_hf_cholesky ...'
call wall_time(wall0)
provide mos_times_cholesky_r1
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m) &
!$OMP ShARED (mos_times_cholesky_r1,cholesky_mo_num,f_hf_cholesky,n_points_final_grid)
do ipoint = 1, n_points_final_grid
f_hf_cholesky(ipoint) = 0.d0
do m = 1, cholesky_mo_num
f_hf_cholesky(ipoint) = f_hf_cholesky(ipoint) + &
mos_times_cholesky_r1(m,ipoint) * mos_times_cholesky_r1(m,ipoint)
enddo
f_hf_cholesky(ipoint) *= 2.D0
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky = ',wall1-wall0
free mos_times_cholesky_r1
else
print*,'providing f_hf_cholesky ...'
call wall_time(wall0)
provide mos_times_cholesky_r2 mos_times_cholesky_r1
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m) &
!$OMP ShARED (mos_times_cholesky_r2,mos_times_cholesky_r1,cholesky_mo_num,f_hf_cholesky,n_points_final_grid)
do ipoint = 1, n_points_final_grid
f_hf_cholesky(ipoint) = 0.D0
do m = 1, cholesky_mo_num
f_hf_cholesky(ipoint) = f_hf_cholesky(ipoint) + &
mos_times_cholesky_r2(m,ipoint)*mos_times_cholesky_r1(m,ipoint)
enddo
f_hf_cholesky(ipoint) *= 2.D0
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky = ',wall1-wall0
free mos_times_cholesky_r2 mos_times_cholesky_r1
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, f_hf_cholesky_sparse, (n_points_final_grid)]
implicit none
integer :: ipoint,m,mm,i,ii,p
!!f(R) = \sum_{I} \sum_{J} Phi_I(R) Phi_J(R) V_IJ
!! = \sum_{I}\sum_{J}\sum_A Phi_I(R) Phi_J(R) V_AI V_AJ
!! = \sum_A \sum_{I}Phi_I(R)V_AI \sum_{J}V_AJ Phi_J(R)
!! = \sum_A V_AR G_AR
!! V_AR = \sum_{I}Phi_IR V_AI = \sum_{I}Phi^t_RI V_AI
double precision :: u_dot_v,wall0,wall1,accu_1, accu_2,mo_i_r1,mo_b_r1
double precision :: thresh_1,thresh_2
double precision, allocatable :: accu_vec(:),delta_vec(:)
thresh_2 = ao_cholesky_threshold * 100.d0
thresh_1 = dsqrt(thresh_2)
provide cholesky_mo_transp
if(elec_alpha_num == elec_beta_num)then
call wall_time(wall0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (accu_vec,ipoint,p,ii,i,mm,m,mo_i_r1,mo_b_r1) &
!$OMP ShARED (n_occ_val_orb_for_hf,list_valence_orb_for_hf,list_basis,mos_in_r_array_omp,thresh_1,thresh_2) &
!$OMP ShARED (cholesky_mo_num,f_hf_cholesky_sparse,n_points_final_grid,cholesky_mo_transp,n_basis_orb)
allocate(accu_vec(cholesky_mo_num))
!$OMP DO
do ipoint = 1, n_points_final_grid
f_hf_cholesky_sparse(ipoint) = 0.d0
accu_vec = 0.d0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
mo_i_r1 = mos_in_r_array_omp(i,ipoint)
if(dabs(mo_i_r1).lt.thresh_1)cycle
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r1 = mos_in_r_array_omp(m,ipoint)
if(dabs(mo_i_r1*mo_b_r1).lt.thresh_2)cycle
do p = 1, cholesky_mo_num
accu_vec(p) = accu_vec(p) + mo_i_r1 * mo_b_r1 * cholesky_mo_transp(p,m,i)
enddo
enddo
enddo
do p = 1, cholesky_mo_num
f_hf_cholesky_sparse(ipoint) = f_hf_cholesky_sparse(ipoint) + accu_vec(p) * accu_vec(p)
enddo
f_hf_cholesky_sparse(ipoint) *= 2.D0
enddo
!$OMP END DO
deallocate(accu_vec)
!$OMP END PARALLEL
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky_sparse = ',wall1-wall0
else
call wall_time(wall0)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE (accu_vec,delta_vec,ipoint,p,ii,i,mm,m,mo_i_r1,mo_b_r1) &
!$OMP ShARED (n_occ_val_orb_for_hf,list_valence_orb_for_hf,list_basis,mos_in_r_array_omp,thresh_1,thresh_2) &
!$OMP ShARED (cholesky_mo_num,f_hf_cholesky_sparse,n_points_final_grid,cholesky_mo_transp,n_basis_orb)
allocate(accu_vec(cholesky_mo_num),delta_vec(cholesky_mo_num))
!$OMP DO
do ipoint = 1, n_points_final_grid
f_hf_cholesky_sparse(ipoint) = 0.d0
accu_vec = 0.d0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
mo_i_r1 = mos_in_r_array_omp(i,ipoint)
if(dabs(mo_i_r1).lt.thresh_1)cycle
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r1 = mos_in_r_array_omp(m,ipoint)
if(dabs(mo_i_r1*mo_b_r1).lt.thresh_2)cycle
do p = 1, cholesky_mo_num
accu_vec(p) = accu_vec(p) + mo_i_r1 * mo_b_r1 * cholesky_mo_transp(p,m,i)
enddo
enddo
enddo
delta_vec = 0.d0
do ii = n_occ_val_orb_for_hf(2)+1,n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
mo_i_r1 = mos_in_r_array_omp(i,ipoint)
if(dabs(mo_i_r1).lt.thresh_1)cycle
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r1 = mos_in_r_array_omp(m,ipoint)
if(dabs(mo_i_r1*mo_b_r1).lt.thresh_2)cycle
do p = 1, cholesky_mo_num
delta_vec(p) = delta_vec(p) + mo_i_r1 * mo_b_r1 * cholesky_mo_transp(p,m,i)
enddo
enddo
enddo
do p = 1, cholesky_mo_num
f_hf_cholesky_sparse(ipoint) = f_hf_cholesky_sparse(ipoint) + accu_vec(p) * accu_vec(p) + accu_vec(p) * delta_vec(p)
enddo
f_hf_cholesky_sparse(ipoint) *= 2.D0
enddo
!$OMP END DO
deallocate(accu_vec)
!$OMP END PARALLEL
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky_sparse = ',wall1-wall0
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, on_top_hf_grid, (n_points_final_grid)]
implicit none
integer :: ipoint,i,ii
double precision :: dm_a, dm_b,wall0,wall1
print*,'providing on_top_hf_grid ...'
provide mos_in_r_array_omp
call wall_time(wall0)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,dm_a,dm_b,ii,i) &
!$OMP ShARED (n_points_final_grid,n_occ_val_orb_for_hf,mos_in_r_array_omp,list_valence_orb_for_hf,on_top_hf_grid)
do ipoint = 1, n_points_final_grid
dm_a = 0.d0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
dm_a += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint)
enddo
dm_b = 0.d0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
dm_b += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint)
enddo
on_top_hf_grid(ipoint) = 2.D0 * dm_a*dm_b
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide on_top_hf_grid = ',wall1-wall0
END_PROVIDER