mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 07:33:49 +01:00
196 lines
5.7 KiB
Fortran
196 lines
5.7 KiB
Fortran
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
|
|
BEGIN_DOC
|
|
! the inactive Fock matrix, in molecular orbitals
|
|
END_DOC
|
|
implicit none
|
|
integer :: p,q,k,kk,t,tt,u,uu
|
|
|
|
do q=1,mo_num
|
|
do p=1,mo_num
|
|
Fipq(p,q)=one_ints_no(p,q)
|
|
end do
|
|
end do
|
|
|
|
! the inactive Fock matrix
|
|
do k=1,n_core_inact_orb
|
|
kk=list_core_inact(k)
|
|
do q=1,mo_num
|
|
do p=1,mo_num
|
|
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
if (bavard) then
|
|
integer :: i
|
|
write(6,*)
|
|
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
|
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
|
write(6,*)
|
|
end if
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
|
|
BEGIN_DOC
|
|
! the active active Fock matrix, in molecular orbitals
|
|
! we create them in MOs, quite expensive
|
|
!
|
|
! for an implementation in AOs we need first the natural orbitals
|
|
! for forming an active density matrix in AOs
|
|
!
|
|
END_DOC
|
|
implicit none
|
|
integer :: p,q,k,kk,t,tt,u,uu
|
|
|
|
Fapq = 0.d0
|
|
|
|
! the active Fock matrix, D0tu is diagonal
|
|
do t=1,n_act_orb
|
|
tt=list_act(t)
|
|
do q=1,mo_num
|
|
do p=1,mo_num
|
|
Fapq(p,q)+=occnum(tt) &
|
|
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
|
|
end do
|
|
end do
|
|
end do
|
|
|
|
if (bavard) then
|
|
integer :: i
|
|
write(6,*)
|
|
write(6,*) ' the effective Fock matrix over MOs'
|
|
write(6,*)
|
|
|
|
write(6,*)
|
|
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
|
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
|
write(6,*)
|
|
write(6,*)
|
|
write(6,*) ' the diagonal of the active Fock matrix '
|
|
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
|
|
write(6,*)
|
|
end if
|
|
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, mcscf_fock_alpha_ao, (ao_num, ao_num)]
|
|
&BEGIN_PROVIDER [ double precision, mcscf_fock_beta_ao, (ao_num, ao_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! mcscf_fock_alpha_ao are set to usual Fock like operator but computed with the MCSCF densities on the AO basis
|
|
END_DOC
|
|
SCF_density_matrix_ao_alpha = D0tu_alpha_ao
|
|
SCF_density_matrix_ao_beta = D0tu_beta_ao
|
|
soft_touch SCF_density_matrix_ao_alpha SCF_density_matrix_ao_beta
|
|
mcscf_fock_beta_ao = fock_matrix_ao_beta
|
|
mcscf_fock_alpha_ao = fock_matrix_ao_alpha
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, mcscf_fock_alpha_mo, (mo_num, mo_num)]
|
|
&BEGIN_PROVIDER [ double precision, mcscf_fock_beta_mo, (mo_num, mo_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Mo_mcscf_fock_alpha are set to usual Fock like operator but computed with the MCSCF densities on the MO basis
|
|
END_DOC
|
|
|
|
call ao_to_mo(mcscf_fock_alpha_ao,ao_num,mcscf_fock_alpha_mo,mo_num)
|
|
call ao_to_mo(mcscf_fock_beta_ao,ao_num,mcscf_fock_beta_mo,mo_num)
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, mcscf_fock_mo, (mo_num,mo_num) ]
|
|
&BEGIN_PROVIDER [ double precision, mcscf_fock_diag_mo, (mo_num)]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! MCSF Fock matrix on the MO basis.
|
|
! For open shells, the ROHF Fock Matrix is ::
|
|
!
|
|
! | Rcc | F^b | Fcv |
|
|
! |-----------------------|
|
|
! | F^b | Roo | F^a |
|
|
! |-----------------------|
|
|
! | Fcv | F^a | Rvv |
|
|
!
|
|
! C: Core, O: Open, V: Virtual
|
|
!
|
|
! Rcc = Acc Fcc^a + Bcc Fcc^b
|
|
! Roo = Aoo Foo^a + Boo Foo^b
|
|
! Rvv = Avv Fvv^a + Bvv Fvv^b
|
|
! Fcv = (F^a + F^b)/2
|
|
!
|
|
! F^a: Fock matrix alpha (MO), F^b: Fock matrix beta (MO)
|
|
! A,B: Coupling parameters
|
|
!
|
|
! J. Chem. Phys. 133, 141102 (2010), https://doi.org/10.1063/1.3503173
|
|
! Coupling parameters from J. Chem. Phys. 125, 204110 (2006); https://doi.org/10.1063/1.2393223.
|
|
! cc oo vv
|
|
! A -0.5 0.5 1.5
|
|
! B 1.5 0.5 -0.5
|
|
!
|
|
END_DOC
|
|
integer :: i,j,n
|
|
if (elec_alpha_num == elec_beta_num) then
|
|
mcscf_fock_mo = mcscf_fock_alpha_mo
|
|
else
|
|
! Core
|
|
do j = 1, elec_beta_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
mcscf_fock_mo(i,j) = - 0.5d0 * mcscf_fock_alpha_mo(i,j) &
|
|
+ 1.5d0 * mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
mcscf_fock_mo(i,j) = mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
mcscf_fock_mo(i,j) = 0.5d0 * mcscf_fock_alpha_mo(i,j) &
|
|
+ 0.5d0 * mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
enddo
|
|
! Open
|
|
do j = elec_beta_num+1, elec_alpha_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
mcscf_fock_mo(i,j) = mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
mcscf_fock_mo(i,j) = 0.5d0 * mcscf_fock_alpha_mo(i,j) &
|
|
+ 0.5d0 * mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
mcscf_fock_mo(i,j) = mcscf_fock_alpha_mo(i,j)
|
|
enddo
|
|
enddo
|
|
! Virtual
|
|
do j = elec_alpha_num+1, mo_num
|
|
! Core
|
|
do i = 1, elec_beta_num
|
|
mcscf_fock_mo(i,j) = 0.5d0 * mcscf_fock_alpha_mo(i,j) &
|
|
+ 0.5d0 * mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
! Open
|
|
do i = elec_beta_num+1, elec_alpha_num
|
|
mcscf_fock_mo(i,j) = mcscf_fock_alpha_mo(i,j)
|
|
enddo
|
|
! Virtual
|
|
do i = elec_alpha_num+1, mo_num
|
|
mcscf_fock_mo(i,j) = 1.5d0 * mcscf_fock_alpha_mo(i,j) &
|
|
- 0.5d0 * mcscf_fock_beta_mo(i,j)
|
|
enddo
|
|
enddo
|
|
endif
|
|
|
|
do i = 1, mo_num
|
|
mcscf_fock_diag_mo(i) = mcscf_fock_mo(i,i)
|
|
enddo
|
|
END_PROVIDER
|