10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-14 18:13:51 +01:00
QuantumPackage/src/ao_two_e_ints/map_integrals_complex.irp.f
2020-02-11 18:23:34 -06:00

545 lines
16 KiB
Fortran

use map_module
subroutine two_e_integrals_index_complex(i,j,k,l,i1,p,q)
use map_module
implicit none
BEGIN_DOC
! Gives a unique index for i,j,k,l using permtuation symmetry.
! i <-> k, j <-> l, and (i,k) <-> (j,l)
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: i1
integer(key_kind) :: r,s,i2
integer(key_kind),intent(out) :: p,q
p = min(i,k)
r = max(i,k)
p = p+shiftr(r*r-r,1)
q = min(j,l)
s = max(j,l)
q = q+shiftr(s*s-s,1)
i1 = min(p,q)
i2 = max(p,q)
i1 = i1+shiftr(i2*i2-i2,1)
end
subroutine two_e_integrals_index_reverse_complex_1(i,j,k,l,i1)
use map_module
implicit none
BEGIN_DOC
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
! For 2 indices $i,j$ and $i \le j$, we have
! $p = i(i-1)/2 + j$.
! The key point is that because $j < i$,
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
! and $j = p - i(i-1)/2$.
! This rule is applied 3 times. First for the symmetry of the
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
! always returns first set such that i<=k, j<=l, ik<=jl
END_DOC
integer, intent(out) :: i(4),j(4),k(4),l(4)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i2,i3
i = 0
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
i3 = i1 - shiftr(i2*i2-i2,1)
k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4)
!ijkl a+ib
i(2) = j(1) !jilk a+ib
j(2) = i(1)
k(2) = l(1)
l(2) = k(1)
i(3) = k(1) !klij a-ib
j(3) = l(1)
k(3) = i(1)
l(3) = j(1)
i(4) = l(1) !lkji a-ib
j(4) = k(1)
k(4) = j(1)
l(4) = i(1)
integer :: ii, jj
do ii=2,4
do jj=1,ii-1
if ( (i(ii) == i(jj)).and. &
(j(ii) == j(jj)).and. &
(k(ii) == k(jj)).and. &
(l(ii) == l(jj)) ) then
i(ii) = 0
exit
endif
enddo
enddo
end
subroutine two_e_integrals_index_reverse_complex_2(i,j,k,l,i1)
use map_module
implicit none
BEGIN_DOC
! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$.
! For 2 indices $i,j$ and $i \le j$, we have
! $p = i(i-1)/2 + j$.
! The key point is that because $j < i$,
! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving
! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$
! and $j = p - i(i-1)/2$.
! This rule is applied 3 times. First for the symmetry of the
! pairs (i,k) and (j,l), and then for the symmetry within each pair.
! always returns first set such that k<=i, j<=l, ik<=jl
END_DOC
integer, intent(out) :: i(4),j(4),k(4),l(4)
integer(key_kind), intent(in) :: i1
integer(key_kind) :: i2,i3
i = 0
i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0))
l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0))
i3 = i1 - shiftr(i2*i2-i2,1)
i(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0))
j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4)
k(1) = int(i3 - shiftr(i(1)*i(1)-i(1),1),4)
!kjil a+ib
i(2) = j(1) !jkli a+ib
j(2) = i(1)
k(2) = l(1)
l(2) = k(1)
i(3) = k(1) !ilkj a-ib
j(3) = l(1)
k(3) = i(1)
l(3) = j(1)
i(4) = l(1) !lijk a-ib
j(4) = k(1)
k(4) = j(1)
l(4) = i(1)
integer :: ii, jj
do ii=2,4
do jj=1,ii-1
if ( (i(ii) == i(jj)).and. &
(j(ii) == j(jj)).and. &
(k(ii) == k(jj)).and. &
(l(ii) == l(jj)) ) then
i(ii) = 0
exit
endif
enddo
enddo
end
BEGIN_PROVIDER [ complex*16, ao_integrals_cache_complex, (0:64*64*64*64) ]
implicit none
BEGIN_DOC
! Cache of AO integrals for fast access
END_DOC
PROVIDE ao_two_e_integrals_in_map
integer :: i,j,k,l,ii
integer(key_kind) :: idx1, idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
complex(integral_kind) :: integral
integer(key_kind) :: p,q,r,s,ik,jl
logical :: ilek, jlel, iklejl
complex*16 :: get_ao_two_e_integral_complex_simple
!$OMP PARALLEL DO PRIVATE (ilek,jlel,p,q,r,s, ik,jl,iklejl, &
!$OMP i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral)
do l=ao_integrals_cache_min,ao_integrals_cache_max
do k=ao_integrals_cache_min,ao_integrals_cache_max
do j=ao_integrals_cache_min,ao_integrals_cache_max
do i=ao_integrals_cache_min,ao_integrals_cache_max
!DIR$ FORCEINLINE
integral = get_ao_two_e_integral_complex_simple(i,j,k,l,&
ao_integrals_map,ao_integrals_map_2)
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
ao_integrals_cache_complex(ii) = integral
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
subroutine ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx,sign)
use map_module
implicit none
BEGIN_DOC
! get position of periodic AO integral <ij|kl>
! use_map1: true if integral is in first ao map, false if integral is in second ao map
! idx: position of real part of integral in map (imag part is at idx+1)
! sign: sign of imaginary part
!
!
! for <ab|cd>, conditionals are [a<c, b<d, ac<bd]
! last two rows are real (ab==cd)
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
! | NEW | <ij|kl> | <ji|lk> | <kl|ij> | <lk|ji> | <kj|il> | <jk|li> | <il|kj> | <li|jk> |
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
! | | m1 | m1* | m2 | m2* |
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
! | <ij|kl> | TTT | TTF | FFT | FFF | FTT | TFF | TFT | FTF |
! | <ij|il> | 0TT | T0F | 0FT | F0F | | | | |
! | <ij|kj> | T0T | 0TF | F0T | 0FF | | | | |
! | <ii|jj> | TT0 | | FF0 | | FT0(r) | TF0(r) | | |
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
! | <ij|ij> | | | | | 00T(r) | 00F(r) | | |
! | <ii|ii> | | | | | 000 | | | |
! +---------+---------+---------+---------+---------+---------+---------+---------+---------+
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind), intent(out) :: idx
logical, intent(out) :: use_map1
double precision, intent(out) :: sign
integer(key_kind) :: p,q,r,s,ik,jl,ij,kl
!DIR$ FORCEINLINE
call two_e_integrals_index_complex(i,j,k,l,idx,ik,jl)
p = min(i,j)
r = max(i,j)
ij = p+shiftr(r*r-r,1)
q = min(k,l)
s = max(k,l)
kl = q+shiftr(s*s-s,1)
idx = 2*idx-1
if (ij==kl) then !real, J -> map1, K -> map2
sign=0.d0
use_map1=.False.
else
if (ik.eq.jl) then
if (i.lt.k) then !TT0
sign=1.d0
use_map1=.True.
else !FF0
sign=-1.d0
use_map1=.True.
endif
else if (i.eq.k) then
if (j.lt.l) then !0T*
sign=1.d0
use_map1=.True.
else !0F*
sign=-1.d0
use_map1=.True.
endif
else if (j.eq.l) then
if (i.lt.k) then
sign=1.d0
use_map1=.True.
else
sign=-1.d0
use_map1=.True.
endif
else if ((i.lt.k).eqv.(j.lt.l)) then
if (i.lt.k) then
sign=1.d0
use_map1=.True.
else
sign=-1.d0
use_map1=.True.
endif
else
if ((j.lt.l).eqv.(ik.lt.jl)) then
sign=1.d0
use_map1=.False.
else
sign=-1.d0
use_map1=.False.
endif
endif
endif
end
complex*16 function get_ao_two_e_integral_complex_simple(i,j,k,l,map,map2) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx1,idx2,idx
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
type(map_type), intent(inout) :: map,map2
integer :: ii
complex(integral_kind) :: tmp
integer(key_kind) :: p,q,r,s,ik,jl
logical :: ilek, jlel, iklejl,use_map1
double precision :: sign
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
PROVIDE ao_two_e_integrals_in_map
call ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx,sign)
if (use_map1) then
call map_get(map,idx,tmp_re)
call map_get(map,idx+1,tmp_im)
tmp_im *= sign
else
call map_get(map2,idx,tmp_re)
if (sign/=0.d0) then
call map_get(map2,idx+1,tmp_im)
tmp_im *= sign
else
tmp_im=0.d0
endif
endif
tmp = dcmplx(tmp_re,tmp_im)
result = tmp
end
complex*16 function get_ao_two_e_integral_complex(i,j,k,l,map,map2) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx1,idx2
real(integral_kind) :: tmp_re, tmp_im
integer(key_kind) :: idx_re,idx_im
type(map_type), intent(inout) :: map,map2
integer :: ii
complex(integral_kind) :: tmp
complex(integral_kind) :: get_ao_two_e_integral_complex_simple
integer(key_kind) :: p,q,r,s,ik,jl
logical :: ilek, jlel, iklejl
! a.le.c, b.le.d, tri(a,c).le.tri(b,d)
PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_complex ao_integrals_cache_min
!DIR$ FORCEINLINE
! if (ao_overlap_abs(i,k)*ao_overlap_abs(j,l) < ao_integrals_threshold ) then
! tmp = (0.d0,0.d0)
! else if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < ao_integrals_threshold) then
! tmp = (0.d0,0.d0)
! else
if (.True.) then
ii = l-ao_integrals_cache_min
ii = ior(ii, k-ao_integrals_cache_min)
ii = ior(ii, j-ao_integrals_cache_min)
ii = ior(ii, i-ao_integrals_cache_min)
if (iand(ii, -64) /= 0) then
tmp = get_ao_two_e_integral_complex_simple(i,j,k,l,map,map2)
else
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), i-ao_integrals_cache_min)
tmp = ao_integrals_cache_complex(ii)
endif
result = tmp
endif
end
subroutine get_ao_two_e_integrals_complex(j,k,l,sze,out_val)
use map_module
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
complex*16, intent(out) :: out_val(sze)
integer :: i
integer(key_kind) :: hash
double precision :: thresh
PROVIDE ao_two_e_integrals_in_map ao_integrals_map
thresh = ao_integrals_threshold
if (ao_overlap_abs(j,l) < thresh) then
out_val = (0.d0,0.d0)
return
endif
complex*16 :: get_ao_two_e_integral_complex
do i=1,sze
out_val(i) = get_ao_two_e_integral_complex(i,j,k,l,ao_integrals_map,ao_integrals_map_2)
enddo
end
subroutine get_ao_two_e_integrals_non_zero_complex(j,k,l,sze,out_val,out_val_index,non_zero_int)
print*,'not implemented for periodic',irp_here
stop -1
! use map_module
! implicit none
! BEGIN_DOC
! ! Gets multiple AO bi-electronic integral from the AO map .
! ! All non-zero i are retrieved for j,k,l fixed.
! END_DOC
! integer, intent(in) :: j,k,l, sze
! real(integral_kind), intent(out) :: out_val(sze)
! integer, intent(out) :: out_val_index(sze),non_zero_int
!
! integer :: i
! integer(key_kind) :: hash
! double precision :: thresh,tmp
! if(is_complex) then
! print*,'not implemented for periodic:',irp_here
! stop -1
! endif
! PROVIDE ao_two_e_integrals_in_map
! thresh = ao_integrals_threshold
!
! non_zero_int = 0
! if (ao_overlap_abs(j,l) < thresh) then
! out_val = 0.d0
! return
! endif
!
! non_zero_int = 0
! do i=1,sze
! integer, external :: ao_l4
! double precision, external :: ao_two_e_integral
! !DIR$ FORCEINLINE
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
! cycle
! endif
! call two_e_integrals_index(i,j,k,l,hash)
! call map_get(ao_integrals_map, hash,tmp)
! if (dabs(tmp) < thresh ) cycle
! non_zero_int = non_zero_int+1
! out_val_index(non_zero_int) = i
! out_val(non_zero_int) = tmp
! enddo
end
subroutine get_ao_two_e_integrals_non_zero_jl_complex(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int)
print*,'not implemented for periodic',irp_here
stop -1
! use map_module
! implicit none
! BEGIN_DOC
! ! Gets multiple AO bi-electronic integral from the AO map .
! ! All non-zero i are retrieved for j,k,l fixed.
! END_DOC
! double precision, intent(in) :: thresh
! integer, intent(in) :: j,l, sze,sze_max
! real(integral_kind), intent(out) :: out_val(sze_max)
! integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
!
! integer :: i,k
! integer(key_kind) :: hash
! double precision :: tmp
!
! if(is_complex) then
! print*,'not implemented for periodic:',irp_here
! stop -1
! endif
! PROVIDE ao_two_e_integrals_in_map
! non_zero_int = 0
! if (ao_overlap_abs(j,l) < thresh) then
! out_val = 0.d0
! return
! endif
!
! non_zero_int = 0
! do k = 1, sze
! do i = 1, sze
! integer, external :: ao_l4
! double precision, external :: ao_two_e_integral
! !DIR$ FORCEINLINE
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
! cycle
! endif
! call two_e_integrals_index(i,j,k,l,hash)
! call map_get(ao_integrals_map, hash,tmp)
! if (dabs(tmp) < thresh ) cycle
! non_zero_int = non_zero_int+1
! out_val_index(1,non_zero_int) = i
! out_val_index(2,non_zero_int) = k
! out_val(non_zero_int) = tmp
! enddo
! enddo
end
subroutine get_ao_two_e_integrals_non_zero_jl_from_list_complex(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int)
print*,'not implemented for periodic',irp_here
stop -1
! use map_module
! implicit none
! BEGIN_DOC
! ! Gets multiple AO two-electron integrals from the AO map .
! ! All non-zero i are retrieved for j,k,l fixed.
! END_DOC
! double precision, intent(in) :: thresh
! integer, intent(in) :: sze_max
! integer, intent(in) :: j,l, n_list,list(2,sze_max)
! real(integral_kind), intent(out) :: out_val(sze_max)
! integer, intent(out) :: out_val_index(2,sze_max),non_zero_int
!
! integer :: i,k
! integer(key_kind) :: hash
! double precision :: tmp
!
! if(is_complex) then
! print*,'not implemented for periodic:',irp_here
! stop -1
! endif
! PROVIDE ao_two_e_integrals_in_map
! non_zero_int = 0
! if (ao_overlap_abs(j,l) < thresh) then
! out_val = 0.d0
! return
! endif
!
! non_zero_int = 0
! integer :: kk
! do kk = 1, n_list
! k = list(1,kk)
! i = list(2,kk)
! integer, external :: ao_l4
! double precision, external :: ao_two_e_integral
! !DIR$ FORCEINLINE
! if (ao_two_e_integral_schwartz(i,k)*ao_two_e_integral_schwartz(j,l) < thresh) then
! cycle
! endif
! call two_e_integrals_index(i,j,k,l,hash)
! call map_get(ao_integrals_map, hash,tmp)
! if (dabs(tmp) < thresh ) cycle
! non_zero_int = non_zero_int+1
! out_val_index(1,non_zero_int) = i
! out_val_index(2,non_zero_int) = k
! out_val(non_zero_int) = tmp
! enddo
end
subroutine insert_into_ao_integrals_map_2(n_integrals,buffer_i, buffer_values)
use map_module
implicit none
BEGIN_DOC
! Create new entry into AO map
END_DOC
integer, intent(in) :: n_integrals
integer(key_kind), intent(inout) :: buffer_i(n_integrals)
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
call map_append(ao_integrals_map_2, buffer_i, buffer_values, n_integrals)
end