10
0
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-02 03:15:34 +02:00
QuantumPackage/plugins/local/tc_scf/fock_tc.irp.f
2024-04-07 00:43:44 +02:00

306 lines
9.0 KiB
Fortran

! ---
BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_alpha, (ao_num, ao_num)]
&BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_beta , (ao_num, ao_num)]
BEGIN_DOC
!
! two_e_tc_non_hermit_integral_seq_alpha(k,i) = <k| F^tc_alpha |i> ON THE AO BASIS
!
! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions
!
! works in SEQUENTIAL
END_DOC
implicit none
integer :: i, j, k, l
double precision :: density, density_a, density_b
double precision :: t0, t1
PROVIDE ao_two_e_tc_tot
!print*, ' providing two_e_tc_non_hermit_integral_seq ...'
!call wall_time(t0)
two_e_tc_non_hermit_integral_seq_alpha = 0.d0
two_e_tc_non_hermit_integral_seq_beta = 0.d0
do i = 1, ao_num
do k = 1, ao_num
do j = 1, ao_num
do l = 1, ao_num
density_a = TCSCF_density_matrix_ao_alpha(l,j)
density_b = TCSCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho_a(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
!! rho_b(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
! rho(l,j) * < k l| T | i j>
two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j)
! rho(l,j) * < k l| T | i j>
two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(k,i,l,j)
! rho_a(l,j) * < k l| T | j i>
two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
! rho_b(l,j) * < k l| T | j i>
two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
enddo
enddo
enddo
enddo
!call wall_time(t1)
!print*, ' wall time for two_e_tc_non_hermit_integral_seq after = ', t1 - t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_alpha, (ao_num, ao_num)]
&BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_beta , (ao_num, ao_num)]
BEGIN_DOC
!
! two_e_tc_non_hermit_integral_alpha(k,i) = <k| F^tc_alpha |i> ON THE AO BASIS
!
! where F^tc is the TWO-BODY part of the TC Fock matrix and k,i are AO basis functions
!
END_DOC
implicit none
integer :: i, j, k, l
double precision :: density, density_a, density_b, I_coul, I_kjli
double precision :: t0, t1
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
PROVIDE ao_two_e_tc_tot
PROVIDE mo_l_coef mo_r_coef
PROVIDE TCSCF_density_matrix_ao_alpha TCSCF_density_matrix_ao_beta
!print*, ' Providing two_e_tc_non_hermit_integral ...'
!call wall_time(t0)
two_e_tc_non_hermit_integral_alpha = 0.d0
two_e_tc_non_hermit_integral_beta = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, density_a, density_b, density, tmp_a, tmp_b, I_coul, I_kjli) &
!$OMP SHARED (ao_num, TCSCF_density_matrix_ao_alpha, TCSCF_density_matrix_ao_beta, ao_two_e_tc_tot, &
!$OMP two_e_tc_non_hermit_integral_alpha, two_e_tc_non_hermit_integral_beta)
allocate(tmp_a(ao_num,ao_num), tmp_b(ao_num,ao_num))
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO
do j = 1, ao_num
do l = 1, ao_num
density_a = TCSCF_density_matrix_ao_alpha(l,j)
density_b = TCSCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
do i = 1, ao_num
do k = 1, ao_num
I_coul = density * ao_two_e_tc_tot(k,i,l,j)
I_kjli = ao_two_e_tc_tot(k,j,l,i)
tmp_a(k,i) += I_coul - density_a * I_kjli
tmp_b(k,i) += I_coul - density_b * I_kjli
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
do i = 1, ao_num
do j = 1, ao_num
two_e_tc_non_hermit_integral_alpha(j,i) += tmp_a(j,i)
two_e_tc_non_hermit_integral_beta (j,i) += tmp_b(j,i)
enddo
enddo
!$OMP END CRITICAL
deallocate(tmp_a, tmp_b)
!$OMP END PARALLEL
!call wall_time(t1)
!print*, ' Wall time for two_e_tc_non_hermit_integral = ', t1 - t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_alpha, (ao_num, ao_num)]
BEGIN_DOC
! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the AO basis
END_DOC
implicit none
double precision :: t0, t1
!print*, ' Providing Fock_matrix_tc_ao_alpha ...'
!call wall_time(t0)
Fock_matrix_tc_ao_alpha = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_alpha
!call wall_time(t1)
!print*, ' Wall time for Fock_matrix_tc_ao_alpha =', t1-t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_beta, (ao_num, ao_num)]
BEGIN_DOC
! Total beta TC Fock matrix : h_c + Two-e^TC terms on the AO basis
END_DOC
implicit none
Fock_matrix_tc_ao_beta = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_beta
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Fock_matrix_tc_mo_alpha, (mo_num, mo_num)]
BEGIN_DOC
! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the MO basis
END_DOC
implicit none
double precision :: t0, t1, tt0, tt1
double precision, allocatable :: tmp(:,:)
!print*, ' Providing Fock_matrix_tc_mo_alpha ...'
!call wall_time(t0)
if(bi_ortho) then
PROVIDE mo_l_coef mo_r_coef
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
if(three_body_h_tc) then
PROVIDE fock_3e_uhf_mo_a
Fock_matrix_tc_mo_alpha += fock_3e_uhf_mo_a
endif
else
call ao_to_mo( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
endif
!call wall_time(t1)
!print*, ' Wall time for Fock_matrix_tc_mo_alpha =', t1-t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ]
BEGIN_DOC
! Total beta TC Fock matrix : h_c + Two-e^TC terms on the MO basis
END_DOC
implicit none
double precision, allocatable :: tmp(:,:)
if(bi_ortho) then
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
if(three_body_h_tc) then
PROVIDE fock_3e_uhf_mo_b
Fock_matrix_tc_mo_beta += fock_3e_uhf_mo_b
endif
else
call ao_to_mo( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_non_hermit_left]
&BEGIN_PROVIDER [ double precision, grad_non_hermit_right]
&BEGIN_PROVIDER [ double precision, grad_non_hermit]
implicit none
integer :: i, k
grad_non_hermit_left = 0.d0
grad_non_hermit_right = 0.d0
do i = 1, elec_beta_num ! doc --> SOMO
do k = elec_beta_num+1, elec_alpha_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
enddo
enddo
do i = 1, elec_beta_num ! doc --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
enddo
enddo
do i = elec_beta_num+1, elec_alpha_num ! SOMO --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
enddo
enddo
grad_non_hermit = max(grad_non_hermit_left, grad_non_hermit_right)
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_tot, (ao_num, ao_num) ]
implicit none
double precision :: t0, t1
!print*, ' Providing Fock_matrix_tc_ao_tot ...'
!call wall_time(t0)
PROVIDE mo_l_coef mo_r_coef
PROVIDE Fock_matrix_tc_mo_tot
call mo_to_ao_bi_ortho( Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) &
, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) )
!call wall_time(t1)
!print*, ' Wall time for Fock_matrix_tc_ao_tot =', t1-t0
END_PROVIDER
! ---