subroutine u_0_S2_u_0_complex(e_0,u_0,n,keys_tmp,Nint,N_st,sze_8) use bitmasks implicit none BEGIN_DOC ! Computes e_0 = / ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint, N_st, sze_8 double precision, intent(out) :: e_0(N_st) complex*16, intent(in) :: u_0(sze_8,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) complex*16, allocatable :: v_0(:,:) double precision :: u_dot_u_complex complex*16 :: u_dot_v_complex integer :: i,j allocate (v_0(sze_8,N_st)) call s2_u_0_nstates_complex(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8) do i=1,N_st e_0(i) = dble(u_dot_v_complex(u_0(1,i),v_0(1,i),n))/u_dot_u_complex(u_0(1,i),n) + S_z2_Sz enddo end subroutine S2_u_0_complex(v_0,u_0,n,keys_tmp,Nint) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = S^2|u_0> ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint complex*16, intent(out) :: v_0(n) complex*16, intent(in) :: u_0(n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) call s2_u_0_nstates_complex(v_0,u_0,n,keys_tmp,Nint,1,n) end subroutine S2_u_0_nstates_complex(v_0,u_0,n,keys_tmp,Nint,N_st,sze_8) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = S^2|u_0> ! ! n : number of determinants ! END_DOC integer, intent(in) :: N_st,n,Nint, sze_8 complex*16, intent(out) :: v_0(sze_8,N_st) complex*16, intent(in) :: u_0(sze_8,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision :: s2_tmp complex*16, allocatable :: vt(:,:) integer :: i,j,k,l, jj,ii integer :: i0, j0 integer, allocatable :: shortcut(:,:), sort_idx(:,:) integer(bit_kind), allocatable :: sorted(:,:,:), version(:,:,:) integer(bit_kind) :: sorted_i(Nint) integer :: sh, sh2, ni, exa, ext, org_i, org_j, endi, istate ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (n>0) PROVIDE ref_bitmask_energy allocate (shortcut(0:n+1,2), sort_idx(n,2), sorted(Nint,n,2), version(Nint,n,2)) v_0 = (0.d0,0.d0) call sort_dets_ab_v(keys_tmp, sorted(1,1,1), sort_idx(1,1), shortcut(0,1), version(1,1,1), n, Nint) call sort_dets_ba_v(keys_tmp, sorted(1,1,2), sort_idx(1,2), shortcut(0,2), version(1,1,2), n, Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(i,s2_tmp,j,k,jj,vt,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,sorted_i,istate)& !$OMP SHARED(n,u_0,keys_tmp,Nint,v_0,sorted,shortcut,sort_idx,version,N_st,sze_8) allocate(vt(sze_8,N_st)) vt = (0.d0,0.d0) do sh=1,shortcut(0,1) !$OMP DO SCHEDULE(static,1) do sh2=sh,shortcut(0,1) exa = 0 do ni=1,Nint exa = exa + popcnt(xor(version(ni,sh,1), version(ni,sh2,1))) end do if(exa > 2) then cycle end if do i=shortcut(sh,1),shortcut(sh+1,1)-1 org_i = sort_idx(i,1) if(sh==sh2) then endi = i-1 else endi = shortcut(sh2+1,1)-1 end if do ni=1,Nint sorted_i(ni) = sorted(ni,i,1) enddo do j=shortcut(sh2,1),endi org_j = sort_idx(j,1) ext = exa do ni=1,Nint ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j,1))) end do if(ext <= 4) then call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),Nint,s2_tmp) do istate=1,N_st vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate) vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate) enddo endif enddo enddo enddo !$OMP END DO NOWAIT enddo do sh=1,shortcut(0,2) !$OMP DO do i=shortcut(sh,2),shortcut(sh+1,2)-1 org_i = sort_idx(i,2) do j=shortcut(sh,2),i-1 org_j = sort_idx(j,2) ext = 0 do ni=1,Nint ext = ext + popcnt(xor(sorted(ni,i,2), sorted(ni,j,2))) end do if(ext == 4) then call get_s2(keys_tmp(1,1,org_i),keys_tmp(1,1,org_j),Nint,s2_tmp) do istate=1,N_st vt (org_i,istate) = vt (org_i,istate) + s2_tmp*u_0(org_j,istate) vt (org_j,istate) = vt (org_j,istate) + s2_tmp*u_0(org_i,istate) enddo end if end do end do !$OMP END DO NOWAIT enddo !$OMP BARRIER do istate=1,N_st do i=n,1,-1 !$OMP ATOMIC v_0(i,istate) = v_0(i,istate) + vt(i,istate) enddo enddo deallocate(vt) !$OMP END PARALLEL do i=1,n call get_s2(keys_tmp(1,1,i),keys_tmp(1,1,i),Nint,s2_tmp) do istate=1,N_st v_0(i,istate) += s2_tmp * u_0(i,istate) enddo enddo deallocate (shortcut, sort_idx, sorted, version) end subroutine get_uJ_s2_uI_complex(psi_keys_tmp,psi_coefs_tmp,n,nmax_coefs,nmax_keys,s2,nstates) !todo: modify/implement for complex print*,irp_here,' not implemented for complex' stop -1 ! implicit none ! use bitmasks ! integer, intent(in) :: n,nmax_coefs,nmax_keys,nstates ! integer(bit_kind), intent(in) :: psi_keys_tmp(N_int,2,nmax_keys) ! complex*16, intent(in) :: psi_coefs_tmp(nmax_coefs,nstates) ! complex*16, intent(out) :: s2(nstates,nstates) ! double precision :: s2_tmp ! complex*16 :: accu ! integer :: i,j,l,jj,ll,kk ! integer, allocatable :: idx(:) ! BEGIN_DOC ! ! returns the matrix elements of S^2 "s2(i,j)" between the "nstates" states ! ! psi_coefs_tmp(:,i) and psi_coefs_tmp(:,j) ! END_DOC ! s2 = (0.d0,0.d0) ! do ll = 1, nstates ! do jj = 1, nstates ! accu = (0.d0,0.d0) ! !$OMP PARALLEL DEFAULT(NONE) & ! !$OMP PRIVATE (i,j,kk,idx,s2_tmp) & ! !$OMP SHARED (ll,jj,psi_keys_tmp,psi_coefs_tmp,N_int,n,nstates)& ! !$OMP REDUCTION(+:accu) ! allocate(idx(0:n)) ! !$OMP DO SCHEDULE(dynamic) ! do i = n,1,-1 ! Better OMP scheduling ! call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,i),N_int,s2_tmp) ! accu += dconjg(psi_coefs_tmp(i,ll)) * s2_tmp * psi_coefs_tmp(i,jj) ! call filter_connected(psi_keys_tmp,psi_keys_tmp(1,1,i),N_int,i-1,idx) ! do kk=1,idx(0) ! j = idx(kk) ! call get_s2(psi_keys_tmp(1,1,i),psi_keys_tmp(1,1,j),N_int,s2_tmp) ! accu += dconjg(psi_coefs_tmp(i,ll)) * s2_tmp * psi_coefs_tmp(j,jj) + psi_coefs_tmp(i,jj) * s2_tmp * psi_coefs_tmp(j,ll) ! enddo ! enddo ! !$OMP END DO ! deallocate(idx) ! !$OMP END PARALLEL ! s2(ll,jj) += accu ! enddo ! enddo ! do i = 1, nstates ! do j =i+1,nstates ! accu = 0.5d0 * (s2(i,j) + s2(j,i)) ! s2(i,j) = accu ! s2(j,i) = accu ! enddo ! enddo end subroutine i_S2_psi_minilist_complex(key,keys,idx_key,N_minilist,coef,Nint,Ndet,Ndet_max,Nstate,i_S2_psi_array) !todo: modify/implement for complex print*,irp_here,' not implemented for complex' stop -1 ! use bitmasks ! implicit none ! integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate,idx_key(Ndet), N_minilist ! integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) ! integer(bit_kind), intent(in) :: key(Nint,2) ! double precision, intent(in) :: coef(Ndet_max,Nstate) ! double precision, intent(out) :: i_S2_psi_array(Nstate) ! ! integer :: i, ii,j, i_in_key, i_in_coef ! double precision :: phase ! integer :: exc(0:2,2,2) ! double precision :: s2ij ! integer :: idx(0:Ndet) ! BEGIN_DOC !! Computes $\langle i|S^2|\Psi \rangle = \sum_J c_J \langle i|S^2|J \rangle$. !! !! Uses filter_connected_i_H_psi0 to get all the $|J\rangle$ to which $|i\rangle$ !! is connected. The $|J\rangle$ are searched in short pre-computed lists. ! END_DOC ! ! ASSERT (Nint > 0) ! ASSERT (N_int == Nint) ! ASSERT (Nstate > 0) ! ASSERT (Ndet > 0) ! ASSERT (Ndet_max >= Ndet) ! i_S2_psi_array = 0.d0 ! ! call filter_connected_i_H_psi0(keys,key,Nint,N_minilist,idx) ! if (Nstate == 1) then ! ! do ii=1,idx(0) ! i_in_key = idx(ii) ! i_in_coef = idx_key(idx(ii)) ! !DIR$ FORCEINLINE ! call get_s2(keys(1,1,i_in_key),key,Nint,s2ij) ! ! TODO : Cache misses ! i_S2_psi_array(1) = i_S2_psi_array(1) + coef(i_in_coef,1)*s2ij ! enddo ! ! else ! ! do ii=1,idx(0) ! i_in_key = idx(ii) ! i_in_coef = idx_key(idx(ii)) ! !DIR$ FORCEINLINE ! call get_s2(keys(1,1,i_in_key),key,Nint,s2ij) ! do j = 1, Nstate ! i_S2_psi_array(j) = i_S2_psi_array(j) + coef(i_in_coef,j)*s2ij ! enddo ! enddo ! ! endif ! end