use map_module !! AO Map !! ====== BEGIN_PROVIDER [ type(map_type), ao_integrals_map ] &BEGIN_PROVIDER [ type(map_type), ao_integrals_map_2 ] implicit none BEGIN_DOC ! AO integrals END_DOC integer(key_kind) :: key_max integer(map_size_kind) :: sze call two_e_integrals_index(ao_num,ao_num,ao_num,ao_num,key_max) if (is_complex) then sze = key_max*2 call map_init(ao_integrals_map,sze) call map_init(ao_integrals_map_2,sze) print*, 'AO maps initialized (complex): ', 2*sze else sze = key_max call map_init(ao_integrals_map,sze) call map_init(ao_integrals_map_2,1_map_size_kind) print*, 'AO map initialized : ', sze endif END_PROVIDER subroutine two_e_integrals_index(i,j,k,l,i1) use map_module implicit none BEGIN_DOC ! Gives a unique index for i,j,k,l using permtuation symmetry. ! i <-> k, j <-> l, and (i,k) <-> (j,l) END_DOC integer, intent(in) :: i,j,k,l integer(key_kind), intent(out) :: i1 integer(key_kind) :: p,q,r,s,i2 p = min(i,k) r = max(i,k) p = p+shiftr(r*r-r,1) q = min(j,l) s = max(j,l) q = q+shiftr(s*s-s,1) i1 = min(p,q) i2 = max(p,q) i1 = i1+shiftr(i2*i2-i2,1) end subroutine two_e_integrals_index_reverse(i,j,k,l,i1) use map_module implicit none BEGIN_DOC ! Computes the 4 indices $i,j,k,l$ from a unique index $i_1$. ! For 2 indices $i,j$ and $i \le j$, we have ! $p = i(i-1)/2 + j$. ! The key point is that because $j < i$, ! $i(i-1)/2 < p \le i(i+1)/2$. So $i$ can be found by solving ! $i^2 - i - 2p=0$. One obtains $i=1 + \sqrt{1+8p}/2$ ! and $j = p - i(i-1)/2$. ! This rule is applied 3 times. First for the symmetry of the ! pairs (i,k) and (j,l), and then for the symmetry within each pair. END_DOC integer, intent(out) :: i(8),j(8),k(8),l(8) integer(key_kind), intent(in) :: i1 integer(key_kind) :: i2,i3 i = 0 i2 = ceiling(0.5d0*(dsqrt(dble(shiftl(i1,3)+1))-1.d0)) l(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i2,3)+1))-1.d0)) i3 = i1 - shiftr(i2*i2-i2,1) k(1) = ceiling(0.5d0*(dsqrt(dble(shiftl(i3,3)+1))-1.d0)) j(1) = int(i2 - shiftr(l(1)*l(1)-l(1),1),4) i(1) = int(i3 - shiftr(k(1)*k(1)-k(1),1),4) !ijkl i(2) = i(1) !ilkj j(2) = l(1) k(2) = k(1) l(2) = j(1) i(3) = k(1) !kjil j(3) = j(1) k(3) = i(1) l(3) = l(1) i(4) = k(1) !klij j(4) = l(1) k(4) = i(1) l(4) = j(1) i(5) = j(1) !jilk j(5) = i(1) k(5) = l(1) l(5) = k(1) i(6) = j(1) !jkli j(6) = k(1) k(6) = l(1) l(6) = i(1) i(7) = l(1) !lijk j(7) = i(1) k(7) = j(1) l(7) = k(1) i(8) = l(1) !lkji j(8) = k(1) k(8) = j(1) l(8) = i(1) integer :: ii, jj do ii=2,8 do jj=1,ii-1 if ( (i(ii) == i(jj)).and. & (j(ii) == j(jj)).and. & (k(ii) == k(jj)).and. & (l(ii) == l(jj)) ) then i(ii) = 0 exit endif enddo enddo ! This has been tested with up to 1000 AOs, and all the reverse indices are ! correct ! We can remove the test ! do ii=1,8 ! if (i(ii) /= 0) then ! call two_e_integrals_index(i(ii),j(ii),k(ii),l(ii),i2) ! if (i1 /= i2) then ! print *, i1, i2 ! print *, i(ii), j(ii), k(ii), l(ii) ! stop 'two_e_integrals_index_reverse failed' ! endif ! endif ! enddo end BEGIN_PROVIDER [ integer, ao_integrals_cache_min ] &BEGIN_PROVIDER [ integer, ao_integrals_cache_max ] implicit none BEGIN_DOC ! Min and max values of the AOs for which the integrals are in the cache END_DOC ao_integrals_cache_min = max(1,ao_num - 63) ao_integrals_cache_max = ao_num END_PROVIDER BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ] implicit none BEGIN_DOC ! Cache of AO integrals for fast access END_DOC PROVIDE ao_two_e_integrals_in_map integer :: i,j,k,l,ii integer(key_kind) :: idx, idx2 real(integral_kind) :: integral real(integral_kind) :: tmp_re, tmp_im integer(key_kind) :: idx_re,idx_im !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral) do l=ao_integrals_cache_min,ao_integrals_cache_max do k=ao_integrals_cache_min,ao_integrals_cache_max do j=ao_integrals_cache_min,ao_integrals_cache_max do i=ao_integrals_cache_min,ao_integrals_cache_max !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,idx) !DIR$ FORCEINLINE call map_get(ao_integrals_map,idx,integral) ii = l-ao_integrals_cache_min ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) ao_integrals_cache(ii) = integral enddo enddo enddo enddo !$OMP END PARALLEL DO END_PROVIDER double precision function get_ao_two_e_integral(i,j,k,l,map) result(result) use map_module implicit none BEGIN_DOC ! Gets one AO bi-electronic integral from the AO map END_DOC integer, intent(in) :: i,j,k,l integer(key_kind) :: idx type(map_type), intent(inout) :: map integer :: ii real(integral_kind) :: tmp logical, external :: ao_two_e_integral_zero PROVIDE ao_two_e_integrals_in_map ao_integrals_cache ao_integrals_cache_min !DIR$ FORCEINLINE if (ao_two_e_integral_zero(i,j,k,l)) then tmp = 0.d0 else ii = l-ao_integrals_cache_min ii = ior(ii, k-ao_integrals_cache_min) ii = ior(ii, j-ao_integrals_cache_min) ii = ior(ii, i-ao_integrals_cache_min) if (iand(ii, -64) /= 0) then !DIR$ FORCEINLINE call two_e_integrals_index(i,j,k,l,idx) !DIR$ FORCEINLINE call map_get(map,idx,tmp) else ii = l-ao_integrals_cache_min ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) tmp = ao_integrals_cache(ii) endif endif result = tmp end !BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ] ! implicit none ! BEGIN_DOC ! ! Cache of AO integrals for fast access ! END_DOC ! PROVIDE ao_two_e_integrals_in_map ! integer :: i,j,k,l,ii ! integer(key_kind) :: idx1, idx2 ! real(integral_kind) :: tmp_re, tmp_im ! integer(key_kind) :: idx_re,idx_im ! complex(integral_kind) :: integral ! ! ! !$OMP PARALLEL DO PRIVATE (i,j,k,l,idx1,idx2,tmp_re,tmp_im,idx_re,idx_im,ii,integral) ! do l=ao_integrals_cache_min,ao_integrals_cache_max ! do k=ao_integrals_cache_min,ao_integrals_cache_max ! do j=ao_integrals_cache_min,ao_integrals_cache_max ! do i=ao_integrals_cache_min,ao_integrals_cache_max ! !DIR$ FORCEINLINE ! call two_e_integrals_index_2fold(i,j,k,l,idx1) ! !DIR$ FORCEINLINE ! call two_e_integrals_index_2fold(k,l,i,j,idx2) ! idx_re = min(idx1,idx2) ! idx_im = max(idx1,idx2) ! !DIR$ FORCEINLINE ! call map_get(ao_integrals_map,idx_re,tmp_re) ! if (idx_re /= idx_im) then ! call map_get(ao_integrals_map,idx_im,tmp_im) ! if (idx1 < idx2) then ! integral = dcmplx(tmp_re,tmp_im) ! else ! integral = dcmplx(tmp_re,-tmp_im) ! endif ! else ! tmp_im = 0.d0 ! integral = dcmplx(tmp_re,tmp_im) ! endif ! ! ii = l-ao_integrals_cache_min ! ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) ! ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) ! ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) ! ao_integrals_cache_periodic(ii) = integral ! enddo ! enddo ! enddo ! enddo ! !$OMP END PARALLEL DO ! !END_PROVIDER !complex*16 function get_ao_two_e_integral_periodic(i,j,k,l,map) result(result) ! use map_module ! implicit none ! BEGIN_DOC ! ! Gets one AO bi-electronic integral from the AO map ! END_DOC ! integer, intent(in) :: i,j,k,l ! integer(key_kind) :: idx1,idx2 ! real(integral_kind) :: tmp_re, tmp_im ! integer(key_kind) :: idx_re,idx_im ! type(map_type), intent(inout) :: map ! integer :: ii ! complex(integral_kind) :: tmp ! PROVIDE ao_two_e_integrals_in_map ao_integrals_cache_periodic ao_integrals_cache_min ! !DIR$ FORCEINLINE ! logical, external :: ao_two_e_integral_zero ! if (ao_two_e_integral_zero(i,j,k,l)) then ! tmp = (0.d0,0.d0) ! else ! ii = l-ao_integrals_cache_min ! ii = ior(ii, k-ao_integrals_cache_min) ! ii = ior(ii, j-ao_integrals_cache_min) ! ii = ior(ii, i-ao_integrals_cache_min) ! if (iand(ii, -64) /= 0) then ! !DIR$ FORCEINLINE ! call two_e_integrals_index_2fold(i,j,k,l,idx1) ! !DIR$ FORCEINLINE ! call two_e_integrals_index_2fold(k,l,i,j,idx2) ! idx_re = min(idx1,idx2) ! idx_im = max(idx1,idx2) ! !DIR$ FORCEINLINE ! call map_get(ao_integrals_map,idx_re,tmp_re) ! if (idx_re /= idx_im) then ! call map_get(ao_integrals_map,idx_im,tmp_im) ! if (idx1 < idx2) then ! tmp = dcmplx(tmp_re,tmp_im) ! else ! tmp = dcmplx(tmp_re,-tmp_im) ! endif ! else ! tmp_im = 0.d0 ! tmp = dcmplx(tmp_re,tmp_im) ! endif ! else ! ii = l-ao_integrals_cache_min ! ii = ior( shiftl(ii,6), k-ao_integrals_cache_min) ! ii = ior( shiftl(ii,6), j-ao_integrals_cache_min) ! ii = ior( shiftl(ii,6), i-ao_integrals_cache_min) ! tmp = ao_integrals_cache_periodic(ii) ! endif ! result = tmp ! endif !end subroutine get_ao_two_e_integrals(j,k,l,sze,out_val) use map_module BEGIN_DOC ! Gets multiple AO bi-electronic integral from the AO map . ! All i are retrieved for j,k,l fixed. ! physicist convention : END_DOC implicit none integer, intent(in) :: j,k,l, sze real(integral_kind), intent(out) :: out_val(sze) integer :: i integer(key_kind) :: hash logical, external :: ao_one_e_integral_zero PROVIDE ao_two_e_integrals_in_map ao_integrals_map if (ao_one_e_integral_zero(j,l)) then out_val = 0.d0 return endif double precision :: get_ao_two_e_integral do i=1,sze out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map) enddo end !subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val) ! use map_module ! BEGIN_DOC ! ! Gets multiple AO bi-electronic integral from the AO map . ! ! All i are retrieved for j,k,l fixed. ! ! physicist convention : ! END_DOC ! implicit none ! integer, intent(in) :: j,k,l, sze ! complex(integral_kind), intent(out) :: out_val(sze) ! ! integer :: i ! integer(key_kind) :: hash ! logical, external :: ao_one_e_integral_zero ! PROVIDE ao_two_e_integrals_in_map ao_integrals_map ! ! if (ao_one_e_integral_zero(j,l)) then ! out_val = 0.d0 ! return ! endif ! ! double precision :: get_ao_two_e_integral ! do i=1,sze ! out_val(i) = get_ao_two_e_integral(i,j,k,l,ao_integrals_map) ! enddo ! !end subroutine get_ao_two_e_integrals_non_zero(j,k,l,sze,out_val,out_val_index,non_zero_int) use map_module implicit none BEGIN_DOC ! Gets multiple AO bi-electronic integral from the AO map . ! All non-zero i are retrieved for j,k,l fixed. END_DOC integer, intent(in) :: j,k,l, sze real(integral_kind), intent(out) :: out_val(sze) integer, intent(out) :: out_val_index(sze),non_zero_int integer :: i integer(key_kind) :: hash double precision :: tmp logical, external :: ao_one_e_integral_zero logical, external :: ao_two_e_integral_zero if(is_complex) then print*,'not implemented for periodic:',irp_here stop -1 endif PROVIDE ao_two_e_integrals_in_map non_zero_int = 0 if (ao_one_e_integral_zero(j,l)) then out_val = 0.d0 return endif non_zero_int = 0 do i=1,sze integer, external :: ao_l4 double precision, external :: ao_two_e_integral !DIR$ FORCEINLINE if (ao_two_e_integral_zero(i,j,k,l)) then cycle endif call two_e_integrals_index(i,j,k,l,hash) call map_get(ao_integrals_map, hash,tmp) if (dabs(tmp) < ao_integrals_threshold) cycle non_zero_int = non_zero_int+1 out_val_index(non_zero_int) = i out_val(non_zero_int) = tmp enddo end subroutine get_ao_two_e_integrals_non_zero_jl(j,l,thresh,sze_max,sze,out_val,out_val_index,non_zero_int) use map_module implicit none BEGIN_DOC ! Gets multiple AO bi-electronic integral from the AO map . ! All non-zero i are retrieved for j,k,l fixed. END_DOC double precision, intent(in) :: thresh integer, intent(in) :: j,l, sze,sze_max real(integral_kind), intent(out) :: out_val(sze_max) integer, intent(out) :: out_val_index(2,sze_max),non_zero_int integer :: i,k integer(key_kind) :: hash double precision :: tmp logical, external :: ao_one_e_integral_zero logical, external :: ao_two_e_integral_zero if(is_complex) then print*,'not implemented for periodic:',irp_here stop -1 endif PROVIDE ao_two_e_integrals_in_map non_zero_int = 0 if (ao_one_e_integral_zero(j,l)) then out_val = 0.d0 return endif non_zero_int = 0 do k = 1, sze do i = 1, sze integer, external :: ao_l4 double precision, external :: ao_two_e_integral !DIR$ FORCEINLINE if (ao_two_e_integral_zero(i,j,k,l)) then cycle endif call two_e_integrals_index(i,j,k,l,hash) call map_get(ao_integrals_map, hash,tmp) if (dabs(tmp) < thresh ) cycle non_zero_int = non_zero_int+1 out_val_index(1,non_zero_int) = i out_val_index(2,non_zero_int) = k out_val(non_zero_int) = tmp enddo enddo end subroutine get_ao_two_e_integrals_non_zero_jl_from_list(j,l,thresh,list,n_list,sze_max,out_val,out_val_index,non_zero_int) use map_module implicit none BEGIN_DOC ! Gets multiple AO two-electron integrals from the AO map . ! All non-zero i are retrieved for j,k,l fixed. END_DOC double precision, intent(in) :: thresh integer, intent(in) :: sze_max integer, intent(in) :: j,l, n_list,list(2,sze_max) real(integral_kind), intent(out) :: out_val(sze_max) integer, intent(out) :: out_val_index(2,sze_max),non_zero_int integer :: i,k integer(key_kind) :: hash double precision :: tmp logical, external :: ao_one_e_integral_zero logical, external :: ao_two_e_integral_zero if(is_complex) then print*,'not implemented for periodic:',irp_here stop -1 endif PROVIDE ao_two_e_integrals_in_map non_zero_int = 0 if (ao_one_e_integral_zero(j,l)) then out_val = 0.d0 return endif non_zero_int = 0 integer :: kk do kk = 1, n_list k = list(1,kk) i = list(2,kk) integer, external :: ao_l4 double precision, external :: ao_two_e_integral !DIR$ FORCEINLINE if (ao_two_e_integral_zero(i,j,k,l)) then cycle endif call two_e_integrals_index(i,j,k,l,hash) call map_get(ao_integrals_map, hash,tmp) if (dabs(tmp) < thresh ) cycle non_zero_int = non_zero_int+1 out_val_index(1,non_zero_int) = i out_val_index(2,non_zero_int) = k out_val(non_zero_int) = tmp enddo end function get_ao_map_size() implicit none integer (map_size_kind) :: get_ao_map_size BEGIN_DOC ! Returns the number of elements in the AO map END_DOC get_ao_map_size = ao_integrals_map % n_elements + ao_integrals_map_2 % n_elements end subroutine clear_ao_map implicit none BEGIN_DOC ! Frees the memory of the AO map END_DOC call map_deinit(ao_integrals_map) FREE ao_integrals_map call map_deinit(ao_integrals_map_2) FREE ao_integrals_map_2 end subroutine insert_into_ao_integrals_map(n_integrals,buffer_i, buffer_values) use map_module implicit none BEGIN_DOC ! Create new entry into AO map END_DOC integer, intent(in) :: n_integrals integer(key_kind), intent(inout) :: buffer_i(n_integrals) real(integral_kind), intent(inout) :: buffer_values(n_integrals) call map_append(ao_integrals_map, buffer_i, buffer_values, n_integrals) end