subroutine provide_all_three_ints_bi_ortho implicit none BEGIN_DOC ! routine that provides all necessary three-electron integrals END_DOC if(three_body_h_tc)then if(three_e_3_idx_term)then PROVIDE three_e_3_idx_direct_bi_ort three_e_3_idx_cycle_1_bi_ort three_e_3_idx_cycle_2_bi_ort PROVIDE three_e_3_idx_exch23_bi_ort three_e_3_idx_exch13_bi_ort three_e_3_idx_exch12_bi_ort endif if(three_e_4_idx_term)then PROVIDE three_e_4_idx_direct_bi_ort three_e_4_idx_cycle_1_bi_ort three_e_4_idx_cycle_2_bi_ort PROVIDE three_e_4_idx_exch23_bi_ort three_e_4_idx_exch13_bi_ort three_e_4_idx_exch12_bi_ort endif if(.not.double_normal_ord.and.three_e_5_idx_term)then PROVIDE three_e_5_idx_direct_bi_ort three_e_5_idx_cycle_1_bi_ort three_e_5_idx_cycle_2_bi_ort PROVIDE three_e_5_idx_exch23_bi_ort three_e_5_idx_exch13_bi_ort three_e_5_idx_exch12_bi_ort elseif (double_normal_ord .and. (.not. three_e_5_idx_term))then PROVIDE normal_two_body_bi_orth endif endif end subroutine htilde_mu_mat_opt_bi_ortho_tot(key_j, key_i, Nint, htot) implicit none BEGIN_DOC ! ! where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis !! ! Returns the total matrix element !! WARNING !! ! ! Non hermitian !! ! END_DOC use bitmasks integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: htot double precision :: hmono, htwoe, hthree call htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot) end subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree, htot) BEGIN_DOC ! ! where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis !! ! Returns the detail of the matrix element in terms of single, two and three electron contribution. !! WARNING !! ! ! Non hermitian !! ! END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: hmono, htwoe, hthree, htot integer :: degree hmono = 0.d0 htwoe = 0.d0 htot = 0.d0 hthree = 0.D0 call get_excitation_degree(key_i, key_j, degree, Nint) if(degree.gt.2) return if(degree == 0)then call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot) else if (degree == 1)then call single_htilde_mu_mat_fock_bi_ortho(Nint,key_j, key_i , hmono, htwoe, hthree, htot) else if(degree == 2)then call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot) endif if(degree==0) then htot += nuclear_repulsion endif end ! --- subroutine htilde_mu_mat_opt_bi_ortho_no_3e(key_j, key_i, Nint, htot) BEGIN_DOC ! ! where |key_j> is developed on the LEFT basis and |key_i> is developed on the RIGHT basis !! ! Returns the detail of the matrix element WITHOUT ANY CONTRIBUTION FROM THE THREE ELECTRON TERMS !! WARNING !! ! ! Non hermitian !! ! END_DOC use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: htot integer :: degree htot = 0.d0 call get_excitation_degree(key_i, key_j, degree, Nint) if(degree.gt.2) return if(degree == 0)then call diag_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_i,htot) else if (degree == 1)then call single_htilde_mu_mat_fock_bi_ortho_no_3e(Nint,key_j, key_i , htot) else if(degree == 2)then call double_htilde_mu_mat_fock_bi_ortho_no_3e(Nint, key_j, key_i, htot) endif if(degree==0) then htot += nuclear_repulsion endif end ! ---