BEGIN_PROVIDER [integer, list_couple_orb_r1, (2,n_couple_orb_r1)] implicit none integer :: ii,i,mm,m,itmp itmp = 0 do ii = 1, n_occ_val_orb_for_hf(1) i = list_valence_orb_for_hf(ii,1) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) itmp += 1 list_couple_orb_r1(1,itmp) = i list_couple_orb_r1(2,itmp) = m enddo enddo END_PROVIDER BEGIN_PROVIDER [integer, list_couple_orb_r2, (2,n_couple_orb_r2)] implicit none integer :: ii,i,mm,m,itmp itmp = 0 do ii = 1, n_occ_val_orb_for_hf(2) i = list_valence_orb_for_hf(ii,2) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) itmp += 1 list_couple_orb_r2(1,itmp) = i list_couple_orb_r2(2,itmp) = m enddo enddo END_PROVIDER BEGIN_PROVIDER [integer, n_couple_orb_r1] implicit none BEGIN_DOC ! number of couples of alpha occupied times any basis orbital END_DOC n_couple_orb_r1 = n_occ_val_orb_for_hf(1) * n_basis_orb END_PROVIDER BEGIN_PROVIDER [integer, n_couple_orb_r2] implicit none BEGIN_DOC ! number of couples of beta occupied times any basis orbital END_DOC n_couple_orb_r2 = n_occ_val_orb_for_hf(2) * n_basis_orb END_PROVIDER BEGIN_PROVIDER [ double precision, mos_times_cholesky_r1, (cholesky_mo_num,n_points_final_grid)] implicit none BEGIN_DOC ! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point ! ! here Phi_IR is phi_i(R)xphi_b(R) for r1 and V_AI = (ib|A) chollesky vector END_DOC double precision, allocatable :: mos_ib_r1(:,:),mo_chol_r1(:,:) double precision, allocatable :: test(:,:) double precision :: mo_i_r1,mo_b_r1 integer :: ii,i,mm,m,itmp,ipoint,ll allocate(mos_ib_r1(n_couple_orb_r1,n_points_final_grid)) allocate(mo_chol_r1(cholesky_mo_num,n_couple_orb_r1)) do ipoint = 1, n_points_final_grid itmp = 0 do ii = 1, n_occ_val_orb_for_hf(1) i = list_valence_orb_for_hf(ii,1) mo_i_r1 = mos_in_r_array_omp(i,ipoint) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) mo_b_r1 = mos_in_r_array_omp(m,ipoint) itmp += 1 mos_ib_r1(itmp,ipoint) = mo_i_r1 * mo_b_r1 enddo enddo enddo itmp = 0 do ii = 1, n_occ_val_orb_for_hf(1) i = list_valence_orb_for_hf(ii,1) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) itmp += 1 do ll = 1, cholesky_mo_num mo_chol_r1(ll,itmp) = cholesky_mo_transp(ll,m,i) enddo enddo enddo call get_AB_prod(mo_chol_r1,cholesky_mo_num,n_couple_orb_r1,mos_ib_r1,n_points_final_grid,mos_times_cholesky_r1) allocate(test(cholesky_mo_num,n_points_final_grid)) test = 0.d0 do ipoint = 1, n_points_final_grid do itmp = 1, n_couple_orb_r1 i = list_couple_orb_r1(1,itmp) m = list_couple_orb_r1(2,itmp) mo_i_r1 = mos_in_r_array_omp(i,ipoint) mo_b_r1 = mos_in_r_array_omp(m,ipoint) do mm = 1, cholesky_mo_num test(mm,ipoint) += mo_i_r1 * mo_b_r1 * mo_chol_r1(mm,itmp) enddo enddo enddo double precision :: accu accu = 0.d0 do ipoint = 1, n_points_final_grid do mm = 1, cholesky_mo_num accu += dabs(mos_times_cholesky_r1(mm,ipoint) - test(mm,ipoint) ) if(dabs(mos_times_cholesky_r1(mm,ipoint) - test(mm,ipoint)).gt.1.d-10)then print*,'problem ! ',dabs(mos_times_cholesky_r1(mm,ipoint) - test(mm,ipoint)) & , mos_times_cholesky_r1(mm,ipoint) , test(mm,ipoint) endif enddo enddo print*,'accu = ',accu END_PROVIDER BEGIN_PROVIDER [ double precision, mos_times_cholesky_r2, (cholesky_mo_num,n_points_final_grid)] implicit none BEGIN_DOC ! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point ! ! here Phi_IR is phi_i(R)xphi_b(R) for r2 and V_AI = (ib|A) chollesky vector END_DOC double precision, allocatable :: mos_ib_r2(:,:),mo_chol_r2(:,:) double precision, allocatable :: test(:,:) double precision :: mo_i_r2,mo_b_r2 integer :: ii,i,mm,m,itmp,ipoint,ll allocate(mos_ib_r2(n_couple_orb_r2,n_points_final_grid)) allocate(mo_chol_r2(cholesky_mo_num,n_couple_orb_r2)) do ipoint = 1, n_points_final_grid itmp = 0 do ii = 1, n_occ_val_orb_for_hf(2) i = list_valence_orb_for_hf(ii,2) mo_i_r2 = mos_in_r_array_omp(i,ipoint) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) mo_b_r2 = mos_in_r_array_omp(m,ipoint) itmp += 1 mos_ib_r2(itmp,ipoint) = mo_i_r2 * mo_b_r2 enddo enddo enddo itmp = 0 do ii = 1, n_occ_val_orb_for_hf(2) i = list_valence_orb_for_hf(ii,2) do mm = 1, n_basis_orb ! electron 1 m = list_basis(mm) itmp += 1 do ll = 1, cholesky_mo_num mo_chol_r2(ll,itmp) = cholesky_mo_transp(ll,m,i) enddo enddo enddo call get_AB_prod(mo_chol_r2,cholesky_mo_num,n_couple_orb_r2,mos_ib_r2,n_points_final_grid,mos_times_cholesky_r2) allocate(test(cholesky_mo_num,n_points_final_grid)) test = 0.d0 do ipoint = 1, n_points_final_grid do itmp = 1, n_couple_orb_r2 i = list_couple_orb_r2(1,itmp) m = list_couple_orb_r2(2,itmp) mo_i_r2 = mos_in_r_array_omp(i,ipoint) mo_b_r2 = mos_in_r_array_omp(m,ipoint) do mm = 1, cholesky_mo_num test(mm,ipoint) += mo_i_r2 * mo_b_r2 * mo_chol_r2(mm,itmp) enddo enddo enddo double precision :: accu accu = 0.d0 do ipoint = 1, n_points_final_grid do mm = 1, cholesky_mo_num accu += dabs(mos_times_cholesky_r2(mm,ipoint) - test(mm,ipoint) ) if(dabs(mos_times_cholesky_r2(mm,ipoint) - test(mm,ipoint)).gt.1.d-10)then print*,'problem ! ',dabs(mos_times_cholesky_r2(mm,ipoint) - test(mm,ipoint)) & , mos_times_cholesky_r2(mm,ipoint) , test(mm,ipoint) endif enddo enddo print*,'accu = ',accu END_PROVIDER BEGIN_PROVIDER [ double precision, f_hf_cholesky, (n_points_final_grid)] implicit none integer :: ipoint !!f(R) = \sum_{I} \sum_{J} Phi_I(R) Phi_J(R) V_IJ !! = \sum_{I}\sum_{J}\sum_A Phi_I(R) Phi_J(R) V_AI V_AJ !! = \sum_A \sum_{I}Phi_I(R)V_AI \sum_{J}V_AJ Phi_J(R) !! = \sum_A V_AR G_AR !! V_AR = \sum_{I}Phi_IR V_AI = \sum_{I}Phi^t_RI V_AI double precision :: u_dot_v do ipoint = 1, n_points_final_grid f_hf_cholesky(ipoint) = 2.D0 * u_dot_v(mos_times_cholesky_r2(1,ipoint),mos_times_cholesky_r1(1,ipoint),cholesky_mo_num) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, on_top_hf_grid, (n_points_final_grid)] implicit none integer :: ipoint,i,ii double precision :: dm_a, dm_b do ipoint = 1, n_points_final_grid dm_a = 0.d0 do ii = 1, n_occ_val_orb_for_hf(1) i = list_valence_orb_for_hf(ii,1) dm_a += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint) enddo dm_b = 0.d0 do ii = 1, n_occ_val_orb_for_hf(2) i = list_valence_orb_for_hf(ii,2) dm_b += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint) enddo on_top_hf_grid(ipoint) = 2.D0 * dm_a*dm_b enddo END_PROVIDER