! Dimensions of MOs BEGIN_PROVIDER [ integer, n_mo_dim ] implicit none BEGIN_DOC ! Number of different pairs (i,j) of MOs we can build, ! with i>j END_DOC n_mo_dim = mo_num*(mo_num-1)/2 END_PROVIDER BEGIN_PROVIDER [ integer, n_mo_dim_core ] implicit none BEGIN_DOC ! Number of different pairs (i,j) of core MOs we can build, ! with i>j END_DOC n_mo_dim_core = dim_list_core_orb*(dim_list_core_orb-1)/2 END_PROVIDER BEGIN_PROVIDER [ integer, n_mo_dim_act ] implicit none BEGIN_DOC ! Number of different pairs (i,j) of active MOs we can build, ! with i>j END_DOC n_mo_dim_act = dim_list_act_orb*(dim_list_act_orb-1)/2 END_PROVIDER BEGIN_PROVIDER [ integer, n_mo_dim_inact ] implicit none BEGIN_DOC ! Number of different pairs (i,j) of inactive MOs we can build, ! with i>j END_DOC n_mo_dim_inact = dim_list_inact_orb*(dim_list_inact_orb-1)/2 END_PROVIDER BEGIN_PROVIDER [ integer, n_mo_dim_virt ] implicit none BEGIN_DOC ! Number of different pairs (i,j) of virtual MOs we can build, ! with i>j END_DOC n_mo_dim_virt = dim_list_virt_orb*(dim_list_virt_orb-1)/2 END_PROVIDER ! Energies/criterions BEGIN_PROVIDER [ double precision, my_st_av_energy ] implicit none BEGIN_DOC ! State average CI energy END_DOC !call update_st_av_ci_energy(my_st_av_energy) call state_average_energy(my_st_av_energy) END_PROVIDER ! With all the MOs BEGIN_PROVIDER [ double precision, my_gradient_opt, (n_mo_dim) ] &BEGIN_PROVIDER [ double precision, my_CC1_opt ] implicit none BEGIN_DOC ! - Gradient of the energy with respect to the MO rotations, for all the MOs. ! - Maximal element of the gradient in absolute value END_DOC double precision :: norm_grad PROVIDE mo_two_e_integrals_in_map call gradient_opt(n_mo_dim, my_gradient_opt, my_CC1_opt, norm_grad) END_PROVIDER BEGIN_PROVIDER [ double precision, my_hessian_opt, (n_mo_dim, n_mo_dim) ] implicit none BEGIN_DOC ! - Gradient of the energy with respect to the MO rotations, for all the MOs. ! - Maximal element of the gradient in absolute value END_DOC double precision, allocatable :: h_f(:,:,:,:) PROVIDE mo_two_e_integrals_in_map allocate(h_f(mo_num, mo_num, mo_num, mo_num)) call hessian_list_opt(n_mo_dim, my_hessian_opt, h_f) END_PROVIDER ! With the list of active MOs ! Can be generalized to any mo_class by changing the list/dimension BEGIN_PROVIDER [ double precision, my_gradient_list_opt, (n_mo_dim_act) ] &BEGIN_PROVIDER [ double precision, my_CC2_opt ] implicit none BEGIN_DOC ! - Gradient of the energy with respect to the MO rotations, only for the active MOs ! ! - Maximal element of the gradient in absolute value END_DOC double precision :: norm_grad PROVIDE mo_two_e_integrals_in_map !one_e_dm_mo two_e_dm_mo mo_one_e_integrals call gradient_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_gradient_list_opt, my_CC2_opt, norm_grad) END_PROVIDER BEGIN_PROVIDER [ double precision, my_hessian_list_opt, (n_mo_dim_act, n_mo_dim_act) ] implicit none BEGIN_DOC ! - Gradient of the energy with respect to the MO rotations, only for the active MOs ! ! - Maximal element of the gradient in absolute value END_DOC double precision, allocatable :: h_f(:,:,:,:) PROVIDE mo_two_e_integrals_in_map allocate(h_f(dim_list_act_orb, dim_list_act_orb, dim_list_act_orb, dim_list_act_orb)) call hessian_list_opt(n_mo_dim_act, dim_list_act_orb, list_act, my_hessian_list_opt, h_f) END_PROVIDER