BEGIN_PROVIDER [double precision, one_e_tr_dm_mo, (mo_num, mo_num, N_states, N_states)] implicit none BEGIN_DOC ! One body transition density matrix for all pairs of states n and m, < Psi^n | a_i^\dagger a_a | Psi^m > END_DOC integer :: j,k,l,m,k_a,k_b,n integer :: occ(N_int*bit_kind_size,2) double precision :: ck, cl, ckl double precision :: phase integer :: h1,h2,p1,p2,s1,s2, degree integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int) integer :: exc(0:2,2),n_occ(2) double precision, allocatable :: tmp_a(:,:,:,:), tmp_b(:,:,:,:) integer :: krow, kcol, lrow, lcol PROVIDE psi_det one_e_tr_dm_mo = 0d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(j,k,k_a,k_b,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,& !$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)& !$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, & !$OMP elec_beta_num,one_e_tr_dm_mo,N_det,& !$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,& !$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,& !$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,& !$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,& !$OMP N_det_alpha_unique,N_det_beta_unique,irp_here) allocate(tmp_a(mo_num,mo_num,N_states,N_states), tmp_b(mo_num,mo_num,N_states,N_states) ) tmp_a = 0.d0 !$OMP DO SCHEDULE(dynamic,64) do k_a=1,N_det krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow) tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol) ! Diagonal part ! ------------- call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int) do m=1,N_states do n = 1, N_states ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,n) do l=1,elec_alpha_num j = occ(l,1) tmp_a(j,j,m,n) += ck enddo enddo enddo if (k_a == N_det) cycle l = k_a+1 lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) ! Fix beta determinant, loop over alphas do while ( lcol == kcol ) tmp_det2(:) = psi_det_alpha_unique(:, lrow) call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int) if (degree == 1) then exc = 0 call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states do n = 1, N_states ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,n) * phase tmp_a(h1,p1,m,n) += ckl ckl = psi_bilinear_matrix_values(k_a,n)*psi_bilinear_matrix_values(l,m) * phase tmp_a(p1,h1,m,n) += ckl enddo enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_e_tr_dm_mo(:,:,:,:) = one_e_tr_dm_mo(:,:,:,:) + tmp_a(:,:,:,:) !$OMP END CRITICAL deallocate(tmp_a) !$OMP BARRIER tmp_b = 0.d0 !$OMP DO SCHEDULE(dynamic,64) do k_b=1,N_det krow = psi_bilinear_matrix_transp_rows(k_b) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_transp_columns(k_b) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow) tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol) ! Diagonal part ! ------------- call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int) do m=1,N_states do n = 1, N_states ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,n) do l=1,elec_beta_num j = occ(l,2) tmp_b(j,j,m,n) += ck enddo enddo enddo if (k_b == N_det) cycle l = k_b+1 lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) ! Fix beta determinant, loop over alphas do while ( lrow == krow ) tmp_det2(:) = psi_det_beta_unique(:, lcol) call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int) if (degree == 1) then exc = 0 call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states do n = 1, N_states ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,n) * phase tmp_b(h1,p1,m,n) += ckl ckl = psi_bilinear_matrix_transp_values(k_b,n)*psi_bilinear_matrix_transp_values(l,m) * phase tmp_b(p1,h1,m,n) += ckl enddo enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_e_tr_dm_mo(:,:,:,:) = one_e_tr_dm_mo(:,:,:,:) + tmp_b(:,:,:,:) !$OMP END CRITICAL deallocate(tmp_b) !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, one_e_tr_dm_mo_alpha, (mo_num,mo_num,N_states,N_states) ] &BEGIN_PROVIDER [ double precision, one_e_tr_dm_mo_beta, (mo_num,mo_num,N_states,N_states) ] implicit none BEGIN_DOC ! $\alpha$ and $\beta$ one-body transition density matrices for all pairs of states END_DOC integer :: j,k,l,m,n,k_a,k_b integer :: occ(N_int*bit_kind_size,2) double precision :: ck, cl, ckl double precision :: phase integer :: h1,h2,p1,p2,s1,s2, degree integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int) integer :: exc(0:2,2),n_occ(2) double precision, allocatable :: tmp_a(:,:,:,:), tmp_b(:,:,:,:) integer :: krow, kcol, lrow, lcol PROVIDE psi_det one_e_tr_dm_mo_alpha = 0.d0 one_e_tr_dm_mo_beta = 0.d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(j,k,k_a,k_b,l,m,n,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc,& !$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)& !$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num, & !$OMP elec_beta_num,one_e_tr_dm_mo_alpha,one_e_tr_dm_mo_beta,N_det,& !$OMP mo_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns,& !$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns,& !$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique,& !$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values,& !$OMP N_det_alpha_unique,N_det_beta_unique,irp_here) allocate(tmp_a(mo_num,mo_num,N_states,N_states), tmp_b(mo_num,mo_num,N_states,N_states) ) tmp_a = 0.d0 !$OMP DO SCHEDULE(dynamic,64) do k_a=1,N_det krow = psi_bilinear_matrix_rows(k_a) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_columns(k_a) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow) tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol) ! Diagonal part ! ------------- call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int) do m=1,N_states do n = 1, N_states ck = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(k_a,n) do l=1,elec_alpha_num j = occ(l,1) tmp_a(j,j,m,n) += ck enddo enddo enddo if (k_a == N_det) cycle l = k_a+1 lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) ! Fix beta determinant, loop over alphas do while ( lcol == kcol ) tmp_det2(:) = psi_det_alpha_unique(:, lrow) call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int) if (degree == 1) then exc = 0 call get_single_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states do n = 1, N_states ckl = psi_bilinear_matrix_values(k_a,m)*psi_bilinear_matrix_values(l,n) * phase tmp_a(h1,p1,m,n) += ckl tmp_a(p1,h1,m,n) += ckl enddo enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_e_tr_dm_mo_alpha(:,:,:,:) = one_e_tr_dm_mo_alpha(:,:,:,:) + tmp_a(:,:,:,:) !$OMP END CRITICAL deallocate(tmp_a) tmp_b = 0.d0 !$OMP DO SCHEDULE(dynamic,64) do k_b=1,N_det krow = psi_bilinear_matrix_transp_rows(k_b) ASSERT (krow <= N_det_alpha_unique) kcol = psi_bilinear_matrix_transp_columns(k_b) ASSERT (kcol <= N_det_beta_unique) tmp_det(1:N_int,1) = psi_det_alpha_unique(1:N_int,krow) tmp_det(1:N_int,2) = psi_det_beta_unique (1:N_int,kcol) ! Diagonal part ! ------------- call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int) do m=1,N_states do n = 1, N_states ck = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(k_b,n) do l=1,elec_beta_num j = occ(l,2) tmp_b(j,j,m,n) += ck enddo enddo enddo if (k_b == N_det) cycle l = k_b+1 lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) ! Fix beta determinant, loop over alphas do while ( lrow == krow ) tmp_det2(:) = psi_det_beta_unique(:, lcol) call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int) if (degree == 1) then exc = 0 call get_single_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states do n = 1, N_states ckl = psi_bilinear_matrix_transp_values(k_b,m)*psi_bilinear_matrix_transp_values(l,n) * phase tmp_b(h1,p1,m,n) += ckl tmp_b(p1,h1,m,n) += ckl enddo enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_e_tr_dm_mo_beta(:,:,:,:) = one_e_tr_dm_mo_beta(:,:,:,:) + tmp_b(:,:,:,:) !$OMP END CRITICAL deallocate(tmp_b) !$OMP END PARALLEL END_PROVIDER