BEGIN_PROVIDER [complex*16, chol_mo_integrals_complex, (mo_num_per_kpt,mo_num_per_kpt,chol_num_max,kpt_num,unique_kpt_num)] implicit none BEGIN_DOC ! CD MO integrals END_DOC integer :: i,j,k,l if (read_chol_mo_integrals) then call ezfio_get_mo_two_e_ints_chol_mo_integrals_complex(chol_mo_integrals_complex) print *, 'CD MO integrals read from disk' else call chol_mo_from_chol_ao(chol_mo_integrals_complex,chol_ao_integrals_complex,mo_num_per_kpt,ao_num_per_kpt, & chol_num_max,kpt_num,unique_kpt_num) endif if (write_chol_mo_integrals) then call ezfio_set_mo_two_e_ints_chol_mo_integrals_complex(chol_mo_integrals_complex) print *, 'CD MO integrals written to disk' endif END_PROVIDER subroutine mo_map_fill_from_chol_dot use map_module implicit none BEGIN_DOC ! TODO: verify correct indexing and conj.transp. ! fill mo bielec integral map using 3-index cd integrals END_DOC integer :: i,k,j,l,mu integer :: ki,kk,kj,kl integer :: ii,ik,ij,il integer :: kikk2,kjkl2,jl2,ik2 integer :: i_mo,j_mo,i_cd integer :: kQ, Q_idx complex*16,allocatable :: ints_ik(:,:,:), ints_jl(:,:,:) complex*16 :: integral,mjl,mik integer :: n_integrals_1, n_integrals_2 integer :: size_buffer integer(key_kind),allocatable :: buffer_i_1(:), buffer_i_2(:) real(integral_kind),allocatable :: buffer_values_1(:), buffer_values_2(:) double precision :: tmp_re,tmp_im integer :: mo_num_kpt_2 double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0 double precision :: map_mb logical :: use_map1 integer(key_kind) :: idx_tmp double precision :: sign !complex*16, external :: zdotc complex*16, external :: zdotu mo_num_kpt_2 = mo_num_per_kpt * mo_num_per_kpt size_buffer = min(mo_num_per_kpt*mo_num_per_kpt*mo_num_per_kpt,16000000) print*, 'Providing the mo_bielec integrals from 3-index CD integrals' call write_time(6) ! call ezfio_set_integrals_bielec_disk_access_mo_integrals('Write') ! TOUCH read_mo_integrals read_ao_integrals write_mo_integrals write_ao_integrals call wall_time(wall_1) call cpu_time(cpu_1) allocate( ints_jl(chol_num_max,mo_num_per_kpt,mo_num_per_kpt)) allocate( ints_ik(chol_num_max,mo_num_per_kpt,mo_num_per_kpt)) wall_0 = wall_1 do kQ = 1, kpt_num Q_idx = kpt_sparse_map(kQ) do kl = 1, kpt_num kj = qktok2(kQ,kl) assert(kQ == qktok2(kj,kl)) if (kj>kl) cycle call idx2_tri_int(kj,kl,kjkl2) ints_jl = 0.d0 if (Q_idx > 0) then do i_mo=1,mo_num_per_kpt do j_mo=1,mo_num_per_kpt do i_cd=1,chol_num(kQ) !ints_jl(i_cd,i_mo,j_mo) = chol_mo_integrals_complex(i_mo,j_mo,i_cd,kl,Q_idx) ints_jl(i_cd,i_mo,j_mo) = dconjg(chol_mo_integrals_complex(i_mo,j_mo,i_cd,kl,Q_idx)) enddo enddo enddo else do i_mo=1,mo_num_per_kpt do j_mo=1,mo_num_per_kpt do i_cd=1,chol_num(kQ) !ints_jl(i_cd,i_mo,j_mo) = dconjg(chol_mo_integrals_complex(j_mo,i_mo,i_cd,kj,-Q_idx)) ints_jl(i_cd,i_mo,j_mo) = chol_mo_integrals_complex(j_mo,i_mo,i_cd,kj,-Q_idx) enddo enddo enddo endif do kk=1,kl ki = qktok2(minusk(kk),kQ) assert(ki == kconserv(kl,kk,kj)) if (ki>kl) cycle call idx2_tri_int(ki,kk,kikk2) ints_ik = 0.d0 if (Q_idx > 0) then do i_mo=1,mo_num_per_kpt do j_mo=1,mo_num_per_kpt do i_cd=1,chol_num(kQ) ints_ik(i_cd,i_mo,j_mo) = chol_mo_integrals_complex(i_mo,j_mo,i_cd,ki,Q_idx) enddo enddo enddo ! ints_ik = conjg(reshape(df_mo_integral_array(:,:,:,kikk2),(/mo_num_per_kpt,mo_num_per_kpt,df_num/),order=(/2,1,3/))) else do i_mo=1,mo_num_per_kpt do j_mo=1,mo_num_per_kpt do i_cd=1,chol_num(kQ) ints_ik(i_cd,i_mo,j_mo) = dconjg(chol_mo_integrals_complex(j_mo,i_mo,i_cd,kk,-Q_idx)) enddo enddo enddo endif !$OMP PARALLEL PRIVATE(i,k,j,l,ii,ik,ij,il,jl2,ik2, & !$OMP mu, mik, mjl, & !$OMP n_integrals_1, buffer_i_1, buffer_values_1, & !$OMP n_integrals_2, buffer_i_2, buffer_values_2, & !$OMP idx_tmp, tmp_re, tmp_im, integral,sign,use_map1) & !$OMP DEFAULT(NONE) & !$OMP SHARED(size_buffer, kpt_num, mo_num_per_kpt, mo_num_kpt_2, & !$OMP kl,kj,kjkl2,ints_jl, & !$OMP ki,kk,kikk2,ints_ik, & !$OMP kQ, Q_idx, chol_num, & !$OMP kconserv, chol_mo_integrals_complex, mo_integrals_threshold, & !$OMP mo_integrals_map, mo_integrals_map_2) allocate( & buffer_i_1(size_buffer), & buffer_i_2(size_buffer), & buffer_values_1(size_buffer), & buffer_values_2(size_buffer) & ) n_integrals_1=0 n_integrals_2=0 !$OMP DO SCHEDULE(guided) do il=1,mo_num_per_kpt l=il+(kl-1)*mo_num_per_kpt do ij=1,mo_num_per_kpt j=ij+(kj-1)*mo_num_per_kpt if (j>l) exit call idx2_tri_int(j,l,jl2) do ik=1,mo_num_per_kpt k=ik+(kk-1)*mo_num_per_kpt if (k>l) exit do ii=1,mo_num_per_kpt i=ii+(ki-1)*mo_num_per_kpt if ((j==l) .and. (i>k)) exit call idx2_tri_int(i,k,ik2) if (ik2 > jl2) exit !integral = zdotc(df_num,ints_jl(1,ij,il),1,ints_ik(1,ii,ik),1) !integral = zdotu(chol_num(kQ),ints_jl(1,ij,il),1,ints_ik(1,ii,ik),1) integral = zdotu(chol_num(kQ),ints_jl(1,il,ij),1,ints_ik(1,ii,ik),1) ! print*,i,k,j,l,real(integral),imag(integral) if (cdabs(integral) < mo_integrals_threshold) then cycle endif call ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx_tmp,sign) tmp_re = dble(integral) tmp_im = dimag(integral) if (use_map1) then n_integrals_1 += 1 buffer_i_1(n_integrals_1)=idx_tmp buffer_values_1(n_integrals_1)=tmp_re if (sign.ne.0.d0) then n_integrals_1 += 1 buffer_i_1(n_integrals_1)=idx_tmp+1 buffer_values_1(n_integrals_1)=tmp_im*sign endif if (n_integrals_1 >= size(buffer_i_1)-1) then call map_append(mo_integrals_map, buffer_i_1, buffer_values_1, n_integrals_1) !call insert_into_mo_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1,mo_integrals_threshold) n_integrals_1 = 0 endif else n_integrals_2 += 1 buffer_i_2(n_integrals_2)=idx_tmp buffer_values_2(n_integrals_2)=tmp_re if (sign.ne.0.d0) then n_integrals_2 += 1 buffer_i_2(n_integrals_2)=idx_tmp+1 buffer_values_2(n_integrals_2)=tmp_im*sign endif if (n_integrals_2 >= size(buffer_i_2)-1) then call map_append(mo_integrals_map_2, buffer_i_2, buffer_values_2, n_integrals_2) !call insert_into_mo_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2,mo_integrals_threshold) n_integrals_2 = 0 endif endif enddo !ii enddo !ik enddo !ij enddo !il !$OMP END DO NOWAIT if (n_integrals_1 > 0) then call map_append(mo_integrals_map, buffer_i_1, buffer_values_1, n_integrals_1) !call insert_into_mo_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1,mo_integrals_threshold) endif if (n_integrals_2 > 0) then call map_append(mo_integrals_map_2, buffer_i_2, buffer_values_2, n_integrals_2) !call insert_into_mo_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2,mo_integrals_threshold) endif deallocate( & buffer_i_1, & buffer_i_2, & buffer_values_1, & buffer_values_2 & ) !$OMP END PARALLEL enddo !kk enddo !kl call wall_time(wall_2) if (wall_2 - wall_0 > 1.d0) then wall_0 = wall_2 print*, 100.*float(kQ)/float(kpt_num), '% in ', & wall_2-wall_1,'s',map_mb(mo_integrals_map),'+',map_mb(mo_integrals_map_2),'MB' endif enddo !kQ deallocate( ints_jl,ints_ik ) call map_sort(mo_integrals_map) call map_unique(mo_integrals_map) call map_sort(mo_integrals_map_2) call map_unique(mo_integrals_map_2) !call map_merge(mo_integrals_map) !call map_merge(mo_integrals_map_2) !!call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints_complex_1',mo_integrals_map) !!call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints_complex_2',mo_integrals_map_2) !!call ezfio_set_mo_two_e_ints_io_mo_two_e_integrals('Read') call wall_time(wall_2) call cpu_time(cpu_2) integer*8 :: get_mo_map_size, mo_map_size mo_map_size = get_mo_map_size() print*,'MO integrals provided:' print*,' Size of MO map ', map_mb(mo_integrals_map),'+',map_mb(mo_integrals_map_2),'MB' print*,' Number of MO integrals: ', mo_map_size print*,' cpu time :',cpu_2 - cpu_1, 's' print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')' end subroutine mo_map_fill_from_chol_dot subroutine chol_mo_from_chol_ao(cd_mo,cd_ao,n_mo,n_ao,n_cd,n_k,n_unique_k) use map_module implicit none BEGIN_DOC ! create 3-idx mo ints from 3-idx ao ints END_DOC integer,intent(in) :: n_mo,n_ao,n_cd,n_k,n_unique_k complex*16,intent(out) :: cd_mo(n_mo,n_mo,n_cd,n_k,n_unique_k) complex*16,intent(in) :: cd_ao(n_ao,n_ao,n_cd,n_k,n_unique_k) integer :: ki,kk,mu,kQ,Q_idx complex*16,allocatable :: coef_i(:,:), coef_k(:,:), ints_ik(:,:), ints_tmp(:,:) double precision :: wall_1,wall_2,cpu_1,cpu_2 print*,'providing 3-index CD MO integrals from 3-index CD AO integrals' cd_mo = 0.d0 call wall_time(wall_1) call cpu_time(cpu_1) allocate( & coef_i(n_ao,n_mo),& coef_k(n_ao,n_mo),& ints_ik(n_ao,n_ao),& ints_tmp(n_mo,n_ao)& ) do ki=1, kpt_num coef_i = mo_coef_complex_kpts(:,:,ki) do kk=1, kpt_num coef_k = mo_coef_complex_kpts(:,:,kk) kQ = qktok2(kk,ki) Q_idx = kpt_sparse_map(kQ) if (Q_idx < 0) cycle do mu=1, chol_num(kQ) ints_ik = cd_ao(:,:,mu,ki,Q_idx) call zgemm('C','N',n_mo,n_ao,n_ao, & (1.d0,0.d0), coef_i, n_ao, & ints_ik, n_ao, & (0.d0,0.d0), ints_tmp, n_mo) call zgemm('N','N',n_mo,n_mo,n_ao, & (1.d0,0.d0), ints_tmp, n_mo, & coef_k, n_ao, & (0.d0,0.d0), cd_mo(:,:,mu,ki,Q_idx), n_mo) enddo enddo call wall_time(wall_2) print*,100.*float(ki)/kpt_num, '% in ', & wall_2-wall_1, 's' enddo deallocate( & coef_i, & coef_k, & ints_ik, & ints_tmp & ) call wall_time(wall_2) call cpu_time(cpu_2) print*,' 3-idx CD MO provided' print*,' cpu time:',cpu_2-cpu_1,'s' print*,' wall time:',wall_2-wall_1,'s ( x ',(cpu_2-cpu_1)/(wall_2-wall_1),')' end subroutine chol_mo_from_chol_ao