subroutine test_spher_harm implicit none BEGIN_DOC ! routine to test the generic spherical harmonics routine "spher_harm_func_r3" from R^3 --> C ! ! We test = delta_m1,m2 delta_l1,l2 ! ! The test is done through the integration on a sphere with the Lebedev grid. END_DOC include 'constants.include.F' integer :: l1,m1,i,l2,m2,lmax double precision :: r(3),weight,accu_re, accu_im,accu double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2 double precision :: theta,phi,r_abs lmax = 5 ! Maximum angular momentum until which we are going to test orthogonality conditions do l1 = 0,lmax do m1 = -l1 ,l1 do l2 = 0,lmax do m2 = -l2 ,l2 accu_re = 0.d0 ! accumulator for the REAL part of accu_im = 0.d0 ! accumulator for the IMAGINARY part of accu = 0.d0 ! accumulator for the weights ==> should be \int dOmega == 4 pi ! = \int dOmega Y_l1,m1^* Y_l2,m2 ! \approx \sum_i W_i Y_l1,m1^*(r_i) Y_l2,m2(r_i) WITH r_i being on the spher of radius 1 do i = 1, n_points_integration_angular r(1:3) = angular_quadrature_points(i,1:3) ! ith Lebedev point (x,y,z) on the sphere of radius 1 weight = weights_angular_points(i) ! associated Lebdev weight not necessarily positive !!!!!!!!!!! Test of the Cartesian --> Spherical coordinates ! theta MUST belong to [0,pi] and phi to [0,2pi] ! gets the cartesian to spherical change of coordinates call cartesian_to_spherical(r,theta,phi,r_abs) if(theta.gt.pi.or.theta.lt.0.d0)then print*,'pb with theta, it should be in [0,pi]',theta print*,r endif if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then print*,'pb with phi, it should be in [0,2 pi]',phi/pi print*,r endif !!!!!!!!!!! Routines returning the Spherical harmonics on the grid point call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1) call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2) !!!!!!!!!!! Integration of Y_l1,m1^*(r) Y_l2,m2(r) ! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2) ! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2) accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2) accu += weight enddo ! Test that the sum of the weights is 4 pi if(dabs(accu - dfour_pi).gt.1.d-6)then print*,'Problem !! The sum of the Lebedev weight is not 4 pi ..' print*,accu stop endif ! Test for the delta l1,l2 and delta m1,m2 ! ! Test for the off-diagonal part of the Kronecker delta if(l1.ne.l2.or.m1.ne.m2)then if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then print*,'pb OFF DIAG !!!!! ' print*,'l1,m1,l2,m2',l1,m1,l2,m2 print*,'accu_re = ',accu_re print*,'accu_im = ',accu_im endif endif ! Test for the diagonal part of the Kronecker delta if(l1==l2.and.m1==m2)then if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then print*,'pb DIAG !!!!! ' print*,'l1,m1,l2,m2',l1,m1,l2,m2 print*,'accu_re = ',accu_re print*,'accu_im = ',accu_im endif endif enddo enddo enddo enddo end subroutine test_cart implicit none BEGIN_DOC ! test for the cartesian --> spherical change of coordinates ! ! test the routine "cartesian_to_spherical" such that the polar angle theta ranges in [0,pi] ! ! and the asymuthal angle phi ranges in [0,2pi] END_DOC include 'constants.include.F' double precision :: r(3),theta,phi,r_abs print*,'' r = 0.d0 r(1) = 1.d0 r(2) = 1.d0 call cartesian_to_spherical(r,theta,phi,r_abs) print*,r print*,phi/pi print*,'' r = 0.d0 r(1) =-1.d0 r(2) = 1.d0 call cartesian_to_spherical(r,theta,phi,r_abs) print*,r print*,phi/pi print*,'' r = 0.d0 r(1) =-1.d0 r(2) =-1.d0 call cartesian_to_spherical(r,theta,phi,r_abs) print*,r print*,phi/pi print*,'' r = 0.d0 r(1) = 1.d0 r(2) =-1.d0 call cartesian_to_spherical(r,theta,phi,r_abs) print*,r print*,phi/pi end subroutine test_brutal_spheric implicit none include 'constants.include.F' BEGIN_DOC ! Test for the = delta_m1,m2 delta_l1,l2 using the following two dimentional integration ! ! \int_0^2pi d Phi \int_-1^+1 d(cos(Theta)) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi) ! != \int_0^2pi d Phi \int_0^pi dTheta sin(Theta) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi) ! ! Allows to test for the general functions "spher_harm_func_m_pos" with "spher_harm_func_expl" END_DOC integer :: itheta, iphi,ntheta,nphi double precision :: theta_min, theta_max, dtheta,theta double precision :: phi_min, phi_max, dphi,phi double precision :: accu_re, accu_im,weight double precision :: re_ylm_1, im_ylm_1 ,re_ylm_2, im_ylm_2,accu integer :: l1,m1,i,l2,m2,lmax phi_min = 0.d0 phi_max = 2.D0 * pi theta_min = 0.d0 theta_max = 1.D0 * pi ntheta = 1000 nphi = 1000 dphi = (phi_max - phi_min)/dble(nphi) dtheta = (theta_max - theta_min)/dble(ntheta) lmax = 2 do l1 = 0,lmax do m1 = 0 ,l1 do l2 = 0,lmax do m2 = 0 ,l2 accu_re = 0.d0 accu_im = 0.d0 accu = 0.d0 theta = theta_min do itheta = 1, ntheta phi = phi_min do iphi = 1, nphi ! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1) ! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2) call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1) call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2) weight = dtheta * dphi * dsin(theta) accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2) accu += weight phi += dphi enddo theta += dtheta enddo print*,'l1,m1,l2,m2',l1,m1,l2,m2 print*,'accu_re = ',accu_re print*,'accu_im = ',accu_im print*,'accu = ',accu if(l1.ne.l2.or.m1.ne.m2)then if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then print*,'pb OFF DIAG !!!!! ' endif endif if(l1==l2.and.m1==m2)then if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then print*,'pb DIAG !!!!! ' endif endif enddo enddo enddo enddo end subroutine test_assoc_leg_pol implicit none BEGIN_DOC ! Test for the associated Legendre Polynoms. The test is done through the orthogonality condition. END_DOC print *, 'Hello world' integer :: l1,m1,ngrid,i,l2,m2 l1 = 0 m1 = 0 l2 = 2 m2 = 0 double precision :: x, dx,xmax,accu,xmin double precision :: plgndr,func_1,func_2,ortho_assoc_gaus_pol ngrid = 100000 xmax = 1.d0 xmin = -1.d0 dx = (xmax-xmin)/dble(ngrid) do l2 = 0,10 x = xmin accu = 0.d0 do i = 1, ngrid func_1 = plgndr(l1,m1,x) func_2 = plgndr(l2,m2,x) write(33,*)x, func_1,func_2 accu += func_1 * func_2 * dx x += dx enddo print*,'l2 = ',l2 print*,'accu = ',accu print*,ortho_assoc_gaus_pol(l1,m1,l2) enddo end