subroutine lapack_diag_non_sym(n, A, WR, WI, VL, VR) BEGIN_DOC ! You enter with a general non hermitian matrix A(n,n) ! ! You get out with the real WR and imaginary part WI of the eigenvalues ! ! Eigvalue(n) = WR(n) + i * WI(n) ! ! And the left VL and right VR eigenvectors ! ! VL(i,j) = :: projection on the basis element |i> on the jth left eigenvector ! ! VR(i,j) = :: projection on the basis element |i> on the jth right eigenvector ! ! The real part of the matrix A can be written as A = VR D VL^T ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) double precision, intent(out) :: WR(n), WI(n), VL(n,n), VR(n,n) integer :: lda, ldvl, ldvr, LWORK, INFO double precision, allocatable :: Atmp(:,:), WORK(:) lda = n ldvl = n ldvr = n allocate( Atmp(n,n) ) Atmp(1:n,1:n) = A(1:n,1:n) allocate(WORK(1)) LWORK = -1 ! to ask for the optimal size of WORK call dgeev('V', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO) if(INFO.gt.0)then print*,'dgeev failed !!',INFO stop endif LWORK = max(int(WORK(1)), 1) ! this is the optimal size of WORK deallocate(WORK) allocate(WORK(LWORK)) ! Actual diagonalization call dgeev('V', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO) if(INFO.ne.0) then print*,'dgeev failed !!', INFO stop endif deallocate(Atmp, WORK) end subroutine non_sym_diag_inv_right(n,A,leigvec,reigvec,n_real_eigv,eigval) implicit none BEGIN_DOC ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" END_DOC integer, intent(in) :: n double precision, intent(in) :: A(n,n) double precision, intent(out) :: reigvec(n,n),leigvec(n,n),eigval(n) double precision, allocatable :: Aw(:,:) integer, intent(out) :: n_real_eigv print*,'Computing the left/right eigenvectors ...' character*1 :: JOBVL,JOBVR JOBVL = "V" ! computes the left eigenvectors JOBVR = "V" ! computes the right eigenvectors double precision, allocatable :: WR(:),WI(:),Vl(:,:),VR(:,:),S(:,:),inv_reigvec(:,:) integer :: i,j integer :: n_good integer, allocatable :: list_good(:), iorder(:) double precision :: thr thr = 1.d-10 ! Eigvalue(n) = WR(n) + i * WI(n) allocate(WR(n),WI(n),VL(n,n),VR(n,n),Aw(n,n)) Aw = A do i = 1, n do j = i+1, n if(dabs(Aw(j,j)-Aw(i,i)).lt.thr)then Aw(j,j)+= thr Aw(i,i)-= thr ! if(Aw(j,i) * A(i,j) .lt.0d0 )then ! if(dabs(Aw(j,i) * A(i,j)).lt.thr**(1.5d0))then ! print*,Aw(j,j),Aw(i,i) ! print*,Aw(j,i) , A(i,j) Aw(j,i) = 0.d0 Aw(i,j) = Aw(j,i) ! endif ! endif endif enddo enddo call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR) ! You track the real eigenvalues n_good = 0 ! do i = 1, n ! write(*,'(100(F16.12,X))')A(:,i) ! enddo do i = 1, n print*,'Im part of lambda = ',dabs(WI(i)) if(dabs(WI(i)).lt.thr)then n_good += 1 else print*,'Found an imaginary component to eigenvalue' print*,'Re(i) + Im(i)',WR(i),WI(i) write(*,'(100(F10.5,X))')VR(:,i) write(*,'(100(F10.5,X))')VR(:,i+1) write(*,'(100(F10.5,X))')VL(:,i) write(*,'(100(F10.5,X))')VL(:,i+1) endif enddo allocate(list_good(n_good),iorder(n_good)) n_good = 0 do i = 1, n if(dabs(WI(i)).lt.thr)then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo ! You sort the real eigenvalues call dsort(eigval,iorder,n_good) do i = 1, n_real_eigv do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = VL(j,list_good(iorder(i))) enddo enddo allocate(inv_reigvec(n_real_eigv,n_real_eigv)) ! call get_pseudo_inverse(reigvec,n_real_eigv,n_real_eigv,n_real_eigv,inv_reigvec,n_real_eigv,thr) ! do i = 1, n_real_eigv ! do j = 1, n ! leigvec(j,i) = inv_reigvec(i,j) ! enddo ! enddo allocate( S(n_real_eigv,n_real_eigv) ) ! S = VL x VR call dgemm( 'T', 'N', n_real_eigv, n_real_eigv, n_real_eigv, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) do i = 1,n_real_eigv write(*,'(100(F10.5,X))')S(:,i) enddo ! call lapack_diag_non_sym(n,S,WR,WI,VL,VR) ! print*,'Eigenvalues of S' ! do i = 1, n ! print*,WR(i),dabs(WI(i)) ! enddo call dgemm( 'T', 'N', n_real_eigv, n_real_eigv, n_real_eigv, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) ! call get_inv_half_svd(S, n_real_eigv, inv_reigvec) double precision :: accu_d,accu_nd accu_nd = 0.d0 accu_d = 0.d0 do i = 1, n_real_eigv do j = 1, n_real_eigv if(i==j) then accu_d += S(j,i) * S(j,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) print*,'accu_nd = ',accu_nd if( accu_nd .lt. 1d-10 ) then ! L x R is already bi-orthogonal !print *, ' L & T bi-orthogonality: ok' return else print*,'PB with bi-orthonormality!!' stop endif end subroutine lapack_diag_non_sym_new(n, A, WR, WI, VL, VR) BEGIN_DOC ! ! You enter with a general non hermitian matrix A(n,n) ! ! You get out with the real WR and imaginary part WI of the eigenvalues ! ! Eigvalue(n) = WR(n) + i * WI(n) ! ! And the left VL and right VR eigenvectors ! ! VL(i,j) = :: projection on the basis element |i> on the jth left eigenvector ! ! VR(i,j) = :: projection on the basis element |i> on the jth right eigenvector ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) double precision, intent(out) :: WR(n), WI(n), VL(n,n), VR(n,n) character*1 :: JOBVL,JOBVR,BALANC,SENSE integer :: ILO, IHI integer :: lda, ldvl, ldvr, LWORK, INFO double precision :: ABNRM integer, allocatable :: IWORK(:) double precision, allocatable :: WORK(:), SCALE_array(:), RCONDE(:), RCONDV(:) double precision, allocatable :: Atmp(:,:) allocate( Atmp(n,n) ) Atmp(1:n,1:n) = A(1:n,1:n) JOBVL = "V" ! computes the left eigenvectors JOBVR = "V" ! computes the right eigenvectors BALANC = "B" ! Diagonal scaling and Permutation for optimization SENSE = "B" lda = n ldvl = n ldvr = n allocate(WORK(1),SCALE_array(n),RCONDE(n),RCONDV(n),IWORK(2*n-2)) LWORK = -1 ! to ask for the optimal size of WORK call dgeevx(BALANC,JOBVL,JOBVR,SENSE,& ! CHARACTERS n,Atmp,lda, & ! MATRIX TO DIAGONALIZE WR,WI, & ! REAL AND IMAGINARY PART OF EIGENVALUES VL,ldvl,VR,ldvr, & ! LEFT AND RIGHT EIGENVECTORS ILO,IHI,SCALE_array,ABNRM,RCONDE,RCONDV, & ! OUTPUTS OF OPTIMIZATION WORK,LWORK,IWORK,INFO) !if(INFO.gt.0)then ! print*,'dgeev failed !!',INFO if( INFO.ne.0 ) then print *, 'dgeevx failed !!', INFO stop endif LWORK = max(int(work(1)), 1) ! this is the optimal size of WORK deallocate(WORK) allocate(WORK(LWORK)) ! Actual dnon_hrmt_real_diag_newiagonalization call dgeevx(BALANC,JOBVL,JOBVR,SENSE,& ! CHARACTERS n,Atmp,lda, & ! MATRIX TO DIAGONALIZE WR,WI, & ! REAL AND IMAGINARY PART OF EIGENVALUES VL,ldvl,VR,ldvr, & ! LEFT AND RIGHT EIGENVECTORS ILO,IHI,SCALE_array,ABNRM,RCONDE,RCONDV, & ! OUTPUTS OF OPTIMIZATION WORK,LWORK,IWORK,INFO) !if(INFO.ne.0)then ! print*,'dgeev failed !!',INFO if( INFO.ne.0 ) then print *, 'dgeevx failed !!', INFO stop endif deallocate( Atmp ) deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK ) end ! --- subroutine non_hrmt_real_diag(n, A, leigvec, reigvec, n_real_eigv, eigval) BEGIN_DOC ! ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! ! of a non hermitian matrix A(n,n) ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" ! END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j, n_good double precision :: thr, threshold, accu_d, accu_nd integer, allocatable :: list_good(:), iorder(:) double precision, allocatable :: Aw(:,:) double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:), S(:,:), S_inv_half_tmp(:,:) print*, ' Computing the left/right eigenvectors with lapack ...' ! Eigvalue(n) = WR(n) + i * WI(n) allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n)) Aw = A !print *, ' matrix to diagonalize', Aw call lapack_diag_non_sym(n, Aw, WR, WI, VL, VR) ! --- ! You track the real eigenvalues thr = 1d-15 n_good = 0 do i = 1, n if(dabs(WI(i)).lt.thr) then n_good += 1 else print*, ' Found an imaginary component to eigenvalue' print*, ' Re(i) + Im(i)', WR(i), WI(i) endif enddo allocate(list_good(n_good), iorder(n_good)) n_good = 0 do i = 1, n if(dabs(WI(i)).lt.thr) then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo ! You sort the real eigenvalues call dsort(eigval, iorder, n_good) do i = 1, n_real_eigv do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = Vl(j,list_good(iorder(i))) enddo enddo ! print *, ' ordered eigenvalues' ! print *, ' right eigenvect' ! do i = 1, n ! print *, i, eigval(i) ! write(*, '(1000(F16.10,X))') reigvec(:,i) ! enddo ! --- allocate( S(n_real_eigv,n_real_eigv), S_inv_half_tmp(n_real_eigv,n_real_eigv) ) ! S = VL x VR call dgemm( 'T', 'N', n_real_eigv, n_real_eigv, n_real_eigv, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 accu_d = 0.d0 do i = 1, n_real_eigv do j = 1, n_real_eigv if(i==j) then accu_d += S(j,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) threshold = 1.d-15 if( (accu_nd .gt. threshold) .or. (dabs(accu_d-dble(n_real_eigv)) .gt. threshold) ) then print*, ' sum of off-diag S elements = ', accu_nd print*, ' Should be zero ' print*, ' sum of diag S elements = ', accu_d print*, ' Should be ',n print*, ' Not bi-orthonormal !!' print*, ' Notice that if you are interested in ground state it is not a problem :)' endif end ! --- subroutine lapack_diag_general_non_sym(n, A, B, WR, WI, VL, VR) BEGIN_DOC ! You enter with a general non hermitian matrix A(n,n) and another B(n,n) ! ! You get out with the real WR and imaginary part WI of the eigenvalues ! ! Eigvalue(n) = (WR(n) + i * WI(n)) ! ! And the left VL and right VR eigenvectors ! ! VL(i,j) = :: projection on the basis element |i> on the jth left eigenvector ! ! VR(i,j) = :: projection on the basis element |i> on the jth right eigenvector END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n), B(n,n) double precision, intent(out) :: WR(n), WI(n), VL(n,n), VR(n,n) integer :: lda, ldvl, ldvr, LWORK, INFO integer :: n_good double precision, allocatable :: WORK(:) double precision, allocatable :: Atmp(:,:) lda = n ldvl = n ldvr = n allocate( Atmp(n,n) ) Atmp(1:n,1:n) = A(1:n,1:n) allocate(WORK(1)) LWORK = -1 call dgeev('V', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO) if(INFO.gt.0) then print*,'dgeev failed !!',INFO stop endif LWORK = max(int(WORK(1)), 1) deallocate(WORK) allocate(WORK(LWORK)) call dgeev('V', 'V', n, Atmp, lda, WR, WI, VL, ldvl, VR, ldvr, WORK, LWORK, INFO) if(INFO.ne.0) then print*,'dgeev failed !!', INFO stop endif deallocate( WORK, Atmp ) end ! --- subroutine non_hrmt_general_real_diag(n, A, B, reigvec, leigvec, n_real_eigv, eigval) BEGIN_DOC ! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors ! ! of a non hermitian matrix A(n,n) and B(n,n) ! ! A reigvec = eigval * B * reigvec ! ! (A)^\dagger leigvec = eigval * B * leigvec ! ! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n" END_DOC implicit none integer, intent(in) :: n double precision, intent(in) :: A(n,n), B(n,n) integer, intent(out) :: n_real_eigv double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) integer :: i, j integer :: n_good integer, allocatable :: list_good(:), iorder(:) double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:) double precision, allocatable :: Aw(:,:), Bw(:,:) print*,'Computing the left/right eigenvectors ...' allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n), Bw(n,n)) Aw = A Bw = B call lapack_diag_general_non_sym(n, A, B, WR, WI, VL, VR) ! You track the real eigenvalues n_good = 0 do i = 1, n if(dabs(WI(i)) .lt. 1.d-12) then n_good += 1 else print*,'Found an imaginary component to eigenvalue' print*,'Re(i) + Im(i)',WR(i),WI(i) endif enddo allocate(list_good(n_good), iorder(n_good)) n_good = 0 do i = 1, n if(dabs(WI(i)).lt.1.d-12)then n_good += 1 list_good(n_good) = i eigval(n_good) = WR(i) endif enddo n_real_eigv = n_good do i = 1, n_good iorder(i) = i enddo ! You sort the real eigenvalues call dsort(eigval, iorder, n_good) print*,'n_real_eigv = ', n_real_eigv print*,'n = ', n do i = 1, n_real_eigv print*,i,'eigval(i) = ', eigval(i) do j = 1, n reigvec(j,i) = VR(j,list_good(iorder(i))) leigvec(j,i) = Vl(j,list_good(iorder(i))) enddo enddo end ! --- subroutine impose_biorthog_qr(m, n, thr_d, thr_nd, Vl, Vr) implicit none integer, intent(in) :: m, n double precision, intent(in) :: thr_d, thr_nd double precision, intent(inout) :: Vl(m,n), Vr(m,n) integer :: i, j integer :: LWORK, INFO double precision :: accu_nd, accu_d double precision, allocatable :: TAU(:), WORK(:) double precision, allocatable :: S(:,:), R(:,:), tmp(:,:) ! --- call check_biorthog_binormalize(m, n, Vl, Vr, thr_d, thr_nd, .false.) ! --- allocate(S(n,n)) call dgemm( 'T', 'N', n, n, m, 1.d0 & , Vl, size(Vl, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 accu_d = 0.d0 do i = 1, n do j = 1, n if(i==j) then accu_d += S(j,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n))/dble(n) .lt. thr_d)) then print *, ' bi-orthogonal vectors without QR !' deallocate(S) return endif ! ------------------------------------------------------------------------------------- ! QR factorization of S: S = Q x R print *, ' apply QR decomposition ...' allocate( TAU(n), WORK(1) ) LWORK = -1 call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif ! save the upper triangular R allocate( R(n,n) ) R(:,:) = S(:,:) ! get Q LWORK = -1 call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif deallocate( WORK, TAU ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! get bi-orhtog left & right vectors: ! Vr' = Vr x inv(R) ! Vl' = inv(Q) x Vl = Q.T x Vl ! Q.T x Vl, where Q = S allocate( tmp(n,m) ) call dgemm( 'T', 'T', n, m, n, 1.d0 & , S, size(S, 1), Vl, size(Vl, 1) & , 0.d0, tmp, size(tmp, 1) ) do i = 1, n do j = 1, m Vl(j,i) = tmp(i,j) enddo enddo deallocate(tmp) ! --- ! inv(R) !print *, ' inversing upper triangular matrix ...' call dtrtri("U", "N", n, R, n, INFO) if(INFO .ne. 0) then print*,'dtrtri failed !!', INFO stop endif !print *, ' inversing upper triangular matrix OK' do i = 1, n-1 do j = i+1, n R(j,i) = 0.d0 enddo enddo !print *, ' inv(R):' !do i = 1, n ! write(*, '(1000(F16.10,X))') R(i,:) !enddo ! Vr x inv(R) allocate( tmp(m,n) ) call dgemm( 'N', 'N', m, n, n, 1.d0 & , Vr, size(Vr, 1), R, size(R, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate( R ) do i = 1, n do j = 1, m Vr(j,i) = tmp(j,i) enddo enddo deallocate(tmp) return end ! --- subroutine impose_biorthog_lu(m, n, Vl, Vr, S) implicit none integer, intent(in) :: m, n double precision, intent(inout) :: Vl(m,n), Vr(m,n), S(n,n) integer :: i, j integer :: INFO double precision :: nrm integer, allocatable :: IPIV(:) double precision, allocatable :: L(:,:), tmp(:,:), vectmp(:) !double precision, allocatable :: T(:,:), ll(:,:), rr(:,:), tt(:,:) !allocate( T(n,n) ) !T(:,:) = S(:,:) print *, ' apply LU decomposition ...' ! ------------------------------------------------------------------------------------- ! LU factorization of S: S = P x L x U allocate( IPIV(n) ) call dgetrf(n, n, S, n, IPIV, INFO) if(INFO .ne. 0) then print*, 'dgetrf failed !!', INFO stop endif ! check | S - P x L x U | !allocate( ll(n,n), rr(n,n), tmp(n,n) ) !ll = S !rr = S !do i = 1, n-1 ! ll(i,i) = 1.d0 ! do j = i+1, n ! ll(i,j) = 0.d0 ! rr(j,i) = 0.d0 ! enddo !enddo !ll(n,n) = 1.d0 !call dgemm( 'N', 'N', n, n, n, 1.d0 & ! , ll, size(ll, 1), rr, size(rr, 1) & ! , 0.d0, tmp, size(tmp, 1) ) ! deallocate(ll, rr) !allocate( vectmp(n) ) !do j = n-1, 1, -1 ! i = IPIV(j) ! if(i.ne.j) then ! print *, j, i ! vectmp(:) = tmp(i,:) ! tmp(i,:) = tmp(j,:) ! tmp(j,:) = vectmp(:) ! endif !enddo !deallocate( vectmp ) !nrm = 0.d0 !do i = 1, n ! do j = 1, n ! nrm += dabs(tmp(j,i) - T(j,i)) ! enddo !enddo !deallocate( tmp ) !print*, '|L.T x R - S| =', nrm !stop ! ------ ! inv(L) ! ------ allocate( L(n,n) ) L(:,:) = S(:,:) call dtrtri("L", "U", n, L, n, INFO) if(INFO .ne. 0) then print*, 'dtrtri failed !!', INFO stop endif do i = 1, n-1 L(i,i) = 1.d0 do j = i+1, n L(i,j) = 0.d0 enddo enddo L(n,n) = 1.d0 ! ------ ! inv(U) ! ------ call dtrtri("U", "N", n, S, n, INFO) if(INFO .ne. 0) then print*, 'dtrtri failed !!', INFO stop endif do i = 1, n-1 do j = i+1, n S(j,i) = 0.d0 enddo enddo ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! get bi-orhtog left & right vectors: ! Vr' = Vr x inv(U) ! Vl' = inv(L) x inv(P) x Vl ! inv(P) x Vl allocate( vectmp(n) ) do j = n-1, 1, -1 i = IPIV(j) if(i.ne.j) then vectmp(:) = L(:,j) L(:,j) = L(:,i) L(:,i) = vectmp(:) endif enddo deallocate( vectmp ) ! Vl' allocate( tmp(m,n) ) call dgemm( 'N', 'T', m, n, n, 1.d0 & , Vl, size(Vl, 1), L, size(L, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(L) Vl = tmp deallocate(tmp) ! --- ! Vr x inv(U) allocate( tmp(m,n) ) call dgemm( 'N', 'N', m, n, n, 1.d0 & , Vr, size(Vr, 1), S, size(S, 1) & , 0.d0, tmp, size(tmp, 1) ) Vr = tmp deallocate(tmp) !allocate( tmp(n,n) ) !call dgemm( 'T', 'N', n, n, m, 1.d0 & ! , Vl, size(Vl, 1), Vr, size(Vr, 1) & ! , 0.d0, tmp, size(tmp, 1) ) !nrm = 0.d0 !do i = 1, n ! do j = 1, n ! nrm += dabs(tmp(j,i)) ! enddo !enddo !deallocate( tmp ) !print*, '|L.T x R| =', nrm !stop return end ! --- subroutine check_EIGVEC(n, m, A, eigval, leigvec, reigvec, thr_diag, thr_norm, stop_ifnot) implicit none integer, intent(in) :: n, m logical, intent(in) :: stop_ifnot double precision, intent(in) :: A(n,n), eigval(m), leigvec(n,m), reigvec(n,m), thr_diag, thr_norm integer :: i, j double precision :: tmp, tmp_abs, tmp_nrm, tmp_rel, tmp_dif double precision :: V_nrm, U_nrm double precision, allocatable :: Mtmp(:,:) allocate( Mtmp(n,m) ) ! --- Mtmp = 0.d0 call dgemm( 'N', 'N', n, m, n, 1.d0 & , A, size(A, 1), reigvec, size(reigvec, 1) & , 0.d0, Mtmp, size(Mtmp, 1) ) V_nrm = 0.d0 tmp_nrm = 0.d0 tmp_abs = 0.d0 do j = 1, m tmp = 0.d0 U_nrm = 0.d0 do i = 1, n tmp = tmp + dabs(Mtmp(i,j) - eigval(j) * reigvec(i,j)) tmp_nrm = tmp_nrm + dabs(Mtmp(i,j)) U_nrm = U_nrm + reigvec(i,j) * reigvec(i,j) enddo tmp_abs = tmp_abs + tmp V_nrm = V_nrm + U_nrm !write(*,'(I4,X,(100(F25.16,X)))') j,eigval(j), tmp, U_nrm enddo if(tmp_abs.lt.10.d-10)then tmp_rel = thr_diag/10.d0 else tmp_rel = tmp_abs / tmp_nrm endif tmp_dif = dabs(V_nrm - dble(m)) if( stop_ifnot .and. ((tmp_rel .gt. thr_diag) .or. (tmp_dif .gt. thr_norm)) ) then print *, ' error in right-eigenvectors' print *, ' err tol = ',thr_diag, thr_norm print *, '(tmp_rel .gt. thr_diag) = ',(tmp_rel .gt. thr_diag) print *, '(tmp_dif .gt. thr_norm) = ',(tmp_dif .gt. thr_norm) print *, ' err estim = ', tmp_abs, tmp_rel print *, ' CR norm = ', V_nrm stop endif ! --- Mtmp = 0.d0 call dgemm( 'T', 'N', n, m, n, 1.d0 & , A, size(A, 1), leigvec, size(leigvec, 1) & , 0.d0, Mtmp, size(Mtmp, 1) ) V_nrm = 0.d0 tmp_nrm = 0.d0 tmp_abs = 0.d0 do j = 1, m tmp = 0.d0 U_nrm = 0.d0 do i = 1, n tmp = tmp + dabs(Mtmp(i,j) - eigval(j) * leigvec(i,j)) tmp_nrm = tmp_nrm + dabs(Mtmp(i,j)) U_nrm = U_nrm + leigvec(i,j) * leigvec(i,j) enddo tmp_abs = tmp_abs + tmp V_nrm = V_nrm + U_nrm !write(*,'(I4,X,(100(F25.16,X)))') j,eigval(j), tmp, U_nrm enddo if(tmp_abs.lt.10.d-10)then tmp_rel = thr_diag/10.d0 else tmp_rel = tmp_abs / tmp_nrm endif if( stop_ifnot .and. ((tmp_rel .gt. thr_diag) .or. (tmp_dif .gt. thr_norm)) ) then print *, ' error in left-eigenvectors' print *, ' err tol = ',thr_diag, thr_norm print *, '(tmp_rel .gt. thr_diag) = ',(tmp_rel .gt. thr_diag) print *, '(tmp_dif .gt. thr_norm) = ',(tmp_dif .gt. thr_norm) print *, ' err estim = ', tmp_abs, tmp_rel print *, ' CR norm = ', V_nrm stop endif ! --- deallocate( Mtmp ) end ! --- subroutine check_degen(n, m, eigval, leigvec, reigvec) implicit none integer, intent(in) :: n, m double precision, intent(in) :: eigval(m) double precision, intent(inout) :: leigvec(n,m), reigvec(n,m) integer :: i, j double precision :: ei, ej, de, de_thr, accu_nd double precision, allocatable :: S(:,:) de_thr = 1d-6 do i = 1, m-1 ei = eigval(i) do j = i+1, m ej = eigval(j) de = dabs(ei - ej) if(de .lt. de_thr) then leigvec(:,i) = 0.d0 leigvec(:,j) = 0.d0 leigvec(i,i) = 1.d0 leigvec(j,j) = 1.d0 reigvec(:,i) = 0.d0 reigvec(:,j) = 0.d0 reigvec(i,i) = 1.d0 reigvec(j,j) = 1.d0 endif enddo enddo ! --- allocate( S(m,m) ) ! S = VL x VR call dgemm( 'T', 'N', m, m, n, 1.d0 & , leigvec, size(leigvec, 1), reigvec, size(reigvec, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) cycle accu_nd = accu_nd + S(j,i) * S(j,i) enddo enddo accu_nd = dsqrt(accu_nd) deallocate( S ) print *, ' check_degen: L & T bi-orthogonality: ok' print *, ' accu_nd = ', accu_nd if( accu_nd .lt. 1d-8 ) then return else stop endif end ! --- subroutine impose_weighted_orthog_svd(n, m, W, C) implicit none integer, intent(in) :: n, m double precision, intent(inout) :: C(n,m), W(n,n) integer :: i, j, num_linear_dependencies double precision :: threshold double precision, allocatable :: S(:,:), tmp(:,:) double precision, allocatable :: U(:,:), Vt(:,:), D(:) !print *, ' apply SVD to orthogonalize & normalize weighted vectors' ! --- ! C.T x W x C allocate(S(m,m)) allocate(tmp(m,n)) call dgemm( 'T', 'N', m, n, n, 1.d0 & , C, size(C, 1), W, size(W, 1) & , 0.d0, tmp, size(tmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , tmp, size(tmp, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) deallocate(tmp) !print *, ' overlap bef SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo ! --- allocate(U(m,m), Vt(m,m), D(m)) call svd(S, m, U, m, D, Vt, m, m, m) deallocate(S) threshold = 1.d-6 num_linear_dependencies = 0 do i = 1, m if(abs(D(i)) <= threshold) then D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo if(num_linear_dependencies > 0) then write(*,*) ' linear dependencies = ', num_linear_dependencies write(*,*) ' m = ', m stop endif ! --- allocate(tmp(n,m)) ! tmp <-- C x U call dgemm( 'N', 'N', n, m, m, 1.d0 & , C, size(C, 1), U, size(U, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(U, Vt) ! C <-- tmp x sigma^-0.5 do j = 1, m do i = 1, n C(i,j) = tmp(i,j) * D(j) enddo enddo deallocate(D, tmp) ! --- ! C.T x W x C allocate(S(m,m)) allocate(tmp(m,n)) call dgemm( 'T', 'N', m, n, n, 1.d0 & , C, size(C, 1), W, size(W, 1) & , 0.d0, tmp, size(tmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , tmp, size(tmp, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) deallocate(tmp) !print *, ' overlap aft SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo deallocate(S) ! --- end ! --- subroutine impose_orthog_svd(n, m, C) implicit none integer, intent(in) :: n, m double precision, intent(inout) :: C(n,m) integer :: i, j, num_linear_dependencies double precision :: threshold double precision, allocatable :: S(:,:), tmp(:,:) double precision, allocatable :: U(:,:), Vt(:,:), D(:) !print *, ' apply SVD to orthogonalize & normalize vectors' ! --- allocate(S(m,m)) ! S = C.T x C call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) !print *, ' eigenvec overlap bef SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo ! --- allocate(U(m,m), Vt(m,m), D(m)) call svd(S, m, U, m, D, Vt, m, m, m) deallocate(S) threshold = 1.d-6 num_linear_dependencies = 0 do i = 1, m if(abs(D(i)) <= threshold) then write(*,*) ' D(i) = ', D(i) D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo if(num_linear_dependencies > 0) then write(*,*) ' linear dependencies = ', num_linear_dependencies write(*,*) ' m = ', m write(*,*) ' try with Graham-Schmidt' stop endif ! --- allocate(tmp(n,m)) ! tmp <-- C x U call dgemm( 'N', 'N', n, m, m, 1.d0 & , C, size(C, 1), U, size(U, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(U, Vt) ! C <-- tmp x sigma^-0.5 do j = 1, m do i = 1, n C(i,j) = tmp(i,j) * D(j) enddo enddo deallocate(D, tmp) ! --- allocate(S(m,m)) ! S = C.T x C call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) !print *, ' eigenvec overlap aft SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo deallocate(S) ! --- end ! --- subroutine impose_orthog_svd_overlap(n, m, C, overlap) implicit none integer, intent(in) :: n, m double precision, intent(in ) :: overlap(n,n) double precision, intent(inout) :: C(n,m) integer :: i, j, num_linear_dependencies double precision :: threshold double precision, allocatable :: S(:,:), tmp(:,:), Stmp(:,:) double precision, allocatable :: U(:,:), Vt(:,:), D(:) print *, ' apply SVD to orthogonalize vectors' ! --- ! S = C.T x overlap x C allocate(S(m,m), Stmp(n,m)) call dgemm( 'N', 'N', n, m, n, 1.d0 & , overlap, size(overlap, 1), C, size(C, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), Stmp, size(Stmp, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' eigenvec overlap bef SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo ! --- allocate(U(m,m), Vt(m,m), D(m)) call svd(S, m, U, m, D, Vt, m, m, m) deallocate(S) threshold = 1.d-6 num_linear_dependencies = 0 do i = 1, m if(abs(D(i)) <= threshold) then D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo if(num_linear_dependencies > 0) then write(*,*) ' linear dependencies = ', num_linear_dependencies write(*,*) ' m = ', m stop endif ! --- allocate(tmp(n,m)) ! tmp <-- C x U call dgemm( 'N', 'N', n, m, m, 1.d0 & , C, size(C, 1), U, size(U, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(U, Vt) ! C <-- tmp x sigma^-0.5 do j = 1, m do i = 1, n C(i,j) = tmp(i,j) * D(j) enddo enddo deallocate(D, tmp) ! --- ! S = C.T x overlap x C allocate(S(m,m), Stmp(n,m)) call dgemm( 'N', 'N', n, m, n, 1.d0 & , overlap, size(overlap, 1), C, size(C, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), Stmp, size(Stmp, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' eigenvec overlap aft SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo deallocate(S) end ! --- subroutine impose_orthog_GramSchmidt(n, m, C) implicit none integer, intent(in) :: n, m double precision, intent(inout) :: C(n,m) integer :: i, j, k double precision :: Ojk, Ojj, fact_ct double precision, allocatable :: S(:,:) print *, '' print *, ' apply Gram-Schmidt to orthogonalize & normalize vectors' print *, '' ! --- allocate(S(m,m)) call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) print *, ' eigenvec overlap bef Gram-Schmidt: ' do i = 1, m write(*, '(1000(F16.10,X))') S(i,:) enddo ! --- do k = 2, m do j = 1, k-1 Ojk = 0.d0 Ojj = 0.d0 do i = 1, n Ojk = Ojk + C(i,j) * C(i,k) Ojj = Ojj + C(i,j) * C(i,j) enddo fact_ct = Ojk / Ojj do i = 1, n C(i,k) = C(i,k) - fact_ct * C(i,j) enddo enddo enddo do k = 1, m fact_ct = 0.d0 do i = 1, n fact_ct = fact_ct + C(i,k) * C(i,k) enddo fact_ct = dsqrt(fact_ct) do i = 1, n C(i,k) = C(i,k) / fact_ct enddo enddo ! --- call dgemm( 'T', 'N', m, m, n, 1.d0 & , C, size(C, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) print *, ' eigenvec overlap aft Gram-Schmidt: ' do i = 1, m write(*, '(1000(F16.10,X))') S(i,:) enddo deallocate(S) ! --- end ! --- subroutine impose_orthog_ones(n, deg_num, C) implicit none integer, intent(in) :: n integer, intent(in) :: deg_num(n) double precision, intent(inout) :: C(n,n) integer :: i, j, ii, di, dj print *, '' print *, ' orthogonalize vectors by hand' print *, '' do i = 1, n-1 di = deg_num(i) if(di .gt. 1) then do ii = 1, di C(: ,i+ii-1) = 0.d0 C(i+ii-1,i+ii-1) = 1.d0 enddo do j = i+di+1, n dj = deg_num(j) if(dj .eq. di) then do ii = 1, dj C(:, j+ii-1) = 0.d0 C(j+ii-1,j+ii-1) = 1.d0 enddo endif enddo endif enddo end ! --- subroutine impose_orthog_degen_eigvec(n, e0, C0) implicit none integer, intent(in) :: n double precision, intent(in) :: e0(n) double precision, intent(inout) :: C0(n,n) integer :: i, j, k, m double precision :: ei, ej, de, de_thr integer, allocatable :: deg_num(:) double precision, allocatable :: C(:,:) ! --- allocate( deg_num(n) ) do i = 1, n deg_num(i) = 1 enddo de_thr = thr_degen_tc do i = 1, n-1 ei = e0(i) ! already considered in degen vectors if(deg_num(i).eq.0) cycle do j = i+1, n ej = e0(j) de = dabs(ei - ej) if(de .lt. de_thr) then deg_num(i) = deg_num(i) + 1 deg_num(j) = 0 endif enddo enddo !do i = 1, n ! if(deg_num(i) .gt. 1) then ! print *, ' degen on', i, deg_num(i) ! endif !enddo ! --- ! call impose_orthog_ones(n, deg_num, C0) do i = 1, n m = deg_num(i) if(m .gt. 1) then !if(m.eq.3) then allocate(C(n,m)) do j = 1, m C(1:n,j) = C0(1:n,i+j-1) enddo ! --- ! C <= C U sigma^-0.5 call impose_orthog_svd(n, m, C) ! --- ! C = I !C = 0.d0 !do j = 1, m ! C(i+j-1,j) = 1.d0 !enddo ! --- ! call impose_orthog_GramSchmidt(n, m, C) ! --- do j = 1, m C0(1:n,i+j-1) = C(1:n,j) enddo deallocate(C) endif enddo end ! --- subroutine get_halfinv_svd(n, S) implicit none integer, intent(in) :: n double precision, intent(inout) :: S(n,n) integer :: num_linear_dependencies integer :: i, j, k double precision :: accu_d, accu_nd, thresh double precision, parameter :: threshold = 1.d-6 double precision, allocatable :: U(:,:), Vt(:,:), D(:) double precision, allocatable :: S0(:,:), Stmp(:,:), Stmp2(:,:) allocate( S0(n,n) ) S0(1:n,1:n) = S(1:n,1:n) allocate(U(n,n), Vt(n,n), D(n)) call svd(S, n, U, n, D, Vt, n, n, n) num_linear_dependencies = 0 do i = 1, n if(abs(D(i)) <= threshold) then D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo write(*,*) ' linear dependencies', num_linear_dependencies S(:,:) = 0.d0 do k = 1, n if(D(k) /= 0.d0) then do j = 1, n do i = 1, n S(i,j) = S(i,j) + U(i,k) * D(k) * Vt(k,j) enddo enddo endif enddo deallocate(U, D, Vt) allocate( Stmp(n,n), Stmp2(n,n) ) Stmp = 0.d0 Stmp2 = 0.d0 ! S^-1/2 x S call dgemm( 'N', 'N', n, n, n, 1.d0 & , S, size(S, 1), S0, size(S0, 1) & , 0.d0, Stmp, size(Stmp, 1) ) ! ( S^-1/2 x S ) x S^-1/2 call dgemm( 'N', 'N', n, n, n, 1.d0 & , Stmp, size(Stmp, 1), S, size(S, 1) & , 0.d0, Stmp2, size(Stmp2, 1) ) accu_nd = 0.d0 accu_d = 0.d0 thresh = 1.d-10 do i = 1, n do j = 1, n if(i==j) then accu_d += Stmp2(j,i) else accu_nd = accu_nd + Stmp2(j,i) * Stmp2(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) if( accu_nd.gt.thresh .or. dabs(accu_d-dble(n)).gt.thresh) then print*, ' after S^-1/2: sum of off-diag S elements = ', accu_nd print*, ' after S^-1/2: sum of diag S elements = ', accu_d do i = 1, n write(*,'(1000(F16.10,X))') Stmp2(i,:) enddo stop endif deallocate(S0, Stmp, Stmp2) end ! --- subroutine check_biorthog_binormalize(n, m, Vl, Vr, thr_d, thr_nd, stop_ifnot) implicit none integer, intent(in) :: n, m logical, intent(in) :: stop_ifnot double precision, intent(in) :: thr_d, thr_nd double precision, intent(inout) :: Vl(n,m), Vr(n,m) integer :: i, j double precision :: accu_d, accu_nd, s_tmp double precision, allocatable :: S(:,:) !print *, ' check bi-orthonormality' ! --- allocate(S(m,m)) call dgemm( 'T', 'N', m, m, n, 1.d0 & , Vl, size(Vl, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) !print *, ' overlap matrix before:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo ! S(i,i) = -1 do i = 1, m if(S(i,i) .lt. 0.d0) then !if( (S(i,i) + 1.d0) .lt. thr_d ) then do j = 1, n Vl(j,i) = -1.d0 * Vl(j,i) enddo !S(i,i) = 1.d0 S(i,i) = -S(i,i) endif enddo accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + S(i,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) / dble(m) !print*, ' diag acc bef = ', accu_d !print*, ' nondiag acc bef = ', accu_nd ! --- if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d) ) then do i = 1, m if(S(i,i) <= 0.d0) then print *, ' overap negative' print *, i, S(i,i) exit endif if(dabs(S(i,i) - 1.d0) .gt. thr_d) then s_tmp = 1.d0 / dsqrt(S(i,i)) do j = 1, n Vl(j,i) = Vl(j,i) * s_tmp Vr(j,i) = Vr(j,i) * s_tmp enddo endif enddo endif ! --- call dgemm( 'T', 'N', m, m, n, 1.d0 & , Vl, size(Vl, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) !print *, ' overlap matrix after:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + S(i,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) / dble(m) !print *, ' diag acc aft = ', accu_d !print *, ' nondiag acc aft = ', accu_nd deallocate(S) ! --- if( stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) ) then print *, accu_nd, thr_nd print *, dabs(accu_d-dble(m))/dble(m), thr_d print *, ' biorthog_binormalize failed !' stop endif end ! --- subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_ifnot) implicit none integer, intent(in) :: n, m double precision, intent(in) :: Vl(n,m), Vr(n,m) logical, intent(in) :: stop_ifnot double precision, intent(in) :: thr_d, thr_nd double precision, intent(out) :: accu_d, accu_nd, S(m,m) integer :: i, j double precision, allocatable :: SS(:,:) print *, ' check bi-orthogonality' ! --- call dgemm( 'T', 'N', m, m, n, 1.d0 & , Vl, size(Vl, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) ! print S s'il y a besoin !print *, ' overlap matrix:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + dabs(S(i,i)) !print*, i, S(i,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo !accu_nd = dsqrt(accu_nd) / dble(m*m) accu_nd = dsqrt(accu_nd) / dble(m) if((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d) then print *, ' non bi-orthogonal vectors !' print *, ' accu_nd = ', accu_nd print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m) else print *, ' vectors are bi-orthogonals' endif ! --- if(stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) then print *, ' non bi-orthogonal vectors !' print *, ' accu_nd = ', accu_nd print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m) !print *, ' overlap matrix:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo stop endif end ! --- subroutine check_orthog(n, m, V, accu_d, accu_nd, S) implicit none integer, intent(in) :: n, m double precision, intent(in) :: V(n,m) double precision, intent(out) :: accu_d, accu_nd, S(m,m) integer :: i, j S = 0.d0 call dgemm( 'T', 'N', m, m, n, 1.d0 & , V, size(V, 1), V, size(V, 1) & , 0.d0, S, size(S, 1) ) !print *, '' !print *, ' overlap matrix:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo !print *, '' accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + dabs(S(i,i)) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) !print*, ' diag acc: ', accu_d !print*, ' nondiag acc: ', accu_nd end ! --- subroutine reorder_degen_eigvec(n, deg_num, e0, L0, R0) implicit none integer, intent(in) :: n double precision, intent(inout) :: e0(n), L0(n,n), R0(n,n) integer, intent(out) :: deg_num(n) logical :: complex_root integer :: i, j, k, m, ii, j_tmp double precision :: ei, ej, de, de_thr double precision :: accu_d, accu_nd double precision :: e0_tmp, L0_tmp(n), R0_tmp(n) double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:) do i = 1, n deg_num(i) = 1 enddo de_thr = thr_degen_tc do i = 1, n-1 ei = e0(i) ! already considered in degen vectors if(deg_num(i) .eq. 0) cycle ii = 0 do j = i+1, n ej = e0(j) de = dabs(ei - ej) if(de .lt. de_thr) then ii = ii + 1 j_tmp = i + ii deg_num(j_tmp) = 0 e0_tmp = e0(j_tmp) e0(j_tmp) = e0(j) e0(j) = e0_tmp L0_tmp(1:n) = L0(1:n,j_tmp) L0(1:n,j_tmp) = L0(1:n,j) L0(1:n,j) = L0_tmp(1:n) R0_tmp(1:n) = R0(1:n,j_tmp) R0(1:n,j_tmp) = R0(1:n,j) R0(1:n,j) = R0_tmp(1:n) endif enddo deg_num(i) = ii + 1 enddo ii = 0 do i = 1, n if(deg_num(i) .gt. 1) then !print *, ' degen on', i, deg_num(i), e0(i) ii = ii + 1 endif enddo if(ii .eq. 0) then print*, ' WARNING: bi-orthogonality is lost but there is no degeneracies' print*, ' rotations may change energy' stop endif print *, ii, ' type of degeneracies' ! --- ! do i = 1, n ! m = deg_num(i) ! ! if(m .gt. 1) then ! ! allocate(L(n,m)) ! allocate(R(n,m),S(m,m)) ! ! do j = 1, m ! L(1:n,j) = L0(1:n,i+j-1) ! R(1:n,j) = R0(1:n,i+j-1) ! enddo ! ! !call dgemm( 'T', 'N', m, m, n, 1.d0 & ! ! , L, size(L, 1), R, size(R, 1) & ! ! , 0.d0, S, size(S, 1) ) ! !print*, 'Overlap matrix ' ! !accu_nd = 0.d0 ! !do j = 1, m ! ! write(*,'(100(F16.10,X))') S(1:m,j) ! ! do k = 1, m ! ! if(j==k) cycle ! ! accu_nd += dabs(S(j,k)) ! ! enddo ! !enddo ! !print*,'accu_nd = ',accu_nd !! if(accu_nd .gt.1.d-10) then !! stop !! endif ! ! do j = 1, m ! L0(1:n,i+j-1) = L(1:n,j) ! R0(1:n,i+j-1) = R(1:n,j) ! enddo ! ! deallocate(L, R, S) ! ! endif ! enddo ! end ! --- subroutine impose_biorthog_degen_eigvec(n, deg_num, e0, L0, R0) implicit none integer, intent(in) :: n, deg_num(n) double precision, intent(in) :: e0(n) double precision, intent(inout) :: L0(n,n), R0(n,n) logical :: complex_root integer :: i, j, k, m double precision :: ei, ej, de, de_thr double precision :: accu_d, accu_nd double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:) !do i = 1, n ! if(deg_num(i) .gt. 1) then ! print *, ' degen on', i, deg_num(i), e0(i) ! endif !enddo ! --- do i = 1, n m = deg_num(i) if(m .gt. 1) then allocate(L(n,m), R(n,m), S(m,m)) do j = 1, m L(1:n,j) = L0(1:n,i+j-1) R(1:n,j) = R0(1:n,i+j-1) enddo ! --- !print*, 'Overlap matrix before' call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do j = 1, m !write(*,'(100(F16.10,X))') S(1:m,j) do k = 1, m if(j==k) cycle accu_nd += dabs(S(j,k)) enddo enddo if(accu_nd .lt. 1d-12) then deallocate(S, L, R) cycle endif !print*, ' accu_nd before = ', accu_nd call impose_biorthog_svd(n, m, L, R) !print*, 'Overlap matrix after' call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) accu_nd = 0.d0 do j = 1, m !write(*,'(100(F16.10,X))') S(1:m,j) do k = 1, m if(j==k) cycle accu_nd += dabs(S(j,k)) enddo enddo !print*,' accu_nd after = ', accu_nd if(accu_nd .gt. 1d-12) then print*, ' accu_nd =', accu_nd print*, ' your strategy for degenerates orbitals failed !' print*, m, 'deg on', i stop endif deallocate(S) ! --- !call impose_orthog_svd(n, m, L) !call impose_orthog_GramSchmidt(n, m, L) !call impose_orthog_GramSchmidt(n, m, R) ! --- !allocate(S(m,m)) !call dgemm( 'T', 'N', m, m, n, 1.d0 & ! , L, size(L, 1), R, size(R, 1) & ! , 0.d0, S, size(S, 1) ) !allocate(S_inv_half(m,m)) !call get_inv_half_nonsymmat_diago(S, m, S_inv_half, complex_root) !if(complex_root) then ! print*, ' complex roots in inv_half !!! ' ! stop !endif !call bi_ortho_s_inv_half(m, L, R, S_inv_half) !deallocate(S, S_inv_half) !call impose_biorthog_inverse(n, m, L, R) !call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R) ! --- do j = 1, m L0(1:n,i+j-1) = L(1:n,j) R0(1:n,i+j-1) = R(1:n,j) enddo deallocate(L, R) endif enddo end ! --- subroutine impose_orthog_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, L0, R0) implicit none integer, intent(in) :: n double precision, intent(in) :: thr_d, thr_nd double precision, intent(in) :: e0(n) double precision, intent(inout) :: L0(n,n), R0(n,n) integer :: i, j, k, m double precision :: ei, ej, de, de_thr double precision :: accu_d, accu_nd integer, allocatable :: deg_num(:) double precision, allocatable :: L(:,:), R(:,:), S(:,:) ! --- allocate( deg_num(n) ) do i = 1, n deg_num(i) = 1 enddo de_thr = thr_degen_tc do i = 1, n-1 ei = e0(i) ! already considered in degen vectors if(deg_num(i).eq.0) cycle do j = i+1, n ej = e0(j) de = dabs(ei - ej) if(de .lt. de_thr) then deg_num(i) = deg_num(i) + 1 deg_num(j) = 0 endif enddo enddo do i = 1, n if(deg_num(i).gt.1) then print *, ' degen on', i, deg_num(i) endif enddo ! --- do i = 1, n m = deg_num(i) if(m .gt. 1) then allocate(L(n,m)) allocate(R(n,m)) do j = 1, m L(1:n,j) = L0(1:n,i+j-1) R(1:n,j) = R0(1:n,i+j-1) enddo ! --- call impose_orthog_svd(n, m, L) call impose_orthog_svd(n, m, R) ! --- call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R) allocate(S(m,m)) call check_biorthog(n, m, L, R, accu_d, accu_nd, S, thr_d, thr_nd, .true.) !call check_biorthog(n, m, L, L, accu_d, accu_nd, S, thr_d, thr_nd, .true.) !call check_biorthog(n, m, R, R, accu_d, accu_nd, S, thr_d, thr_nd, .false.) deallocate(S) ! --- do j = 1, m L0(1:n,i+j-1) = L(1:n,j) R0(1:n,i+j-1) = R(1:n,j) enddo deallocate(L, R) endif enddo end ! --- subroutine impose_unique_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, C0, W0, L0, R0) implicit none integer, intent(in) :: n double precision, intent(in) :: thr_d, thr_nd double precision, intent(in) :: e0(n), W0(n,n), C0(n,n) double precision, intent(inout) :: L0(n,n), R0(n,n) logical :: complex_root integer :: i, j, k, m double precision :: ei, ej, de, de_thr integer, allocatable :: deg_num(:) double precision, allocatable :: L(:,:), R(:,:), C(:,:) double precision, allocatable :: S(:,:), S_inv_half(:,:), tmp(:,:) ! --- allocate( deg_num(n) ) do i = 1, n deg_num(i) = 1 enddo de_thr = thr_degen_tc do i = 1, n-1 ei = e0(i) ! already considered in degen vectors if(deg_num(i).eq.0) cycle do j = i+1, n ej = e0(j) de = dabs(ei - ej) if(de .lt. de_thr) then deg_num(i) = deg_num(i) + 1 deg_num(j) = 0 endif enddo enddo !do i = 1, n ! if(deg_num(i) .gt. 1) then ! print *, ' degen on', i, deg_num(i) ! endif !enddo ! --- do i = 1, n m = deg_num(i) if(m .gt. 1) then allocate(L(n,m)) allocate(R(n,m)) allocate(C(n,m)) do j = 1, m L(1:n,j) = L0(1:n,i+j-1) R(1:n,j) = R0(1:n,i+j-1) C(1:n,j) = C0(1:n,i+j-1) enddo ! --- call impose_orthog_svd(n, m, L) call impose_orthog_svd(n, m, R) ! --- ! TODO: ! select C correctly via overlap ! or via selecting degen in HF !call max_overlap_qr(n, m, C, L) !call max_overlap_qr(n, m, C, R) allocate(tmp(m,n)) allocate(S(m,m)) call dgemm( 'T', 'N', m, n, n, 1.d0 & , L, size(L, 1), W0, size(W0, 1) & , 0.d0, tmp, size(tmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , tmp, size(tmp, 1), C, size(C, 1) & , 0.d0, S, size(S, 1) ) call max_overlap_qr(n, m, S, L) !call max_overlap_invprod(n, m, S, L) call dgemm( 'T', 'N', m, n, n, 1.d0 & , C, size(C, 1), W0, size(W0, 1) & , 0.d0, tmp, size(tmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , tmp, size(tmp, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) call max_overlap_qr(n, m, S, R) !call max_overlap_invprod(n, m, S, R) deallocate(S, tmp) ! --- allocate(S(m,m), S_inv_half(m,m)) call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) call get_inv_half_nonsymmat_diago(S, m, S_inv_half, complex_root) if(complex_root)then call impose_biorthog_svd(n, m, L, R) !call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R) else call bi_ortho_s_inv_half(m, L, R, S_inv_half) endif deallocate(S, S_inv_half) ! --- do j = 1, m L0(1:n,i+j-1) = L(1:n,j) R0(1:n,i+j-1) = R(1:n,j) enddo deallocate(L, R, C) endif enddo end ! --- subroutine max_overlap_qr(m, n, S0, V) implicit none integer, intent(in) :: m, n double precision, intent(in) :: S0(n,n) double precision, intent(inout) :: V(m,n) integer :: i, j integer :: LWORK, INFO double precision, allocatable :: TAU(:), WORK(:) double precision, allocatable :: S(:,:), tmp(:,:) allocate(S(n,n)) S = S0 ! --- allocate( TAU(n), WORK(1) ) LWORK = -1 call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif ! get Q in S matrix LWORK = -1 call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif deallocate( WORK, TAU ) ! --- ! V0.T <-- Q.T x V0.T, where Q = S allocate( tmp(n,m) ) call dgemm( 'T', 'T', n, m, n, 1.d0 & , S, size(S, 1), V, size(V, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(S) do i = 1, n do j = 1, m V(j,i) = tmp(i,j) enddo enddo deallocate(tmp) ! --- return end ! --- subroutine max_overlap_invprod(n, m, S, V) implicit none integer, intent(in) :: m, n double precision, intent(in) :: S(m,m) double precision, intent(inout) :: V(n,m) integer :: i double precision, allocatable :: invS(:,:), tmp(:,:) allocate(invS(m,m)) call get_inverse(S, size(S, 1), m, invS, size(invS, 1)) print *, ' overlap ' do i = 1, m write(*, '(1000(F16.10,X))') S(i,:) enddo print *, ' inv overlap ' do i = 1, m write(*, '(1000(F16.10,X))') invS(i,:) enddo allocate(tmp(n,m)) tmp = V call dgemm( 'N', 'N', n, m, m, 1.d0 & , tmp, size(tmp, 1), invS, size(invS, 1) & , 0.d0, V, size(V, 1) ) deallocate(tmp, invS) return end ! --- subroutine impose_biorthog_svd(n, m, L, R) implicit none integer, intent(in) :: n, m double precision, intent(inout) :: L(n,m), R(n,m) integer :: i, j, num_linear_dependencies double precision :: threshold double precision, allocatable :: S(:,:), tmp(:,:) double precision, allocatable :: U(:,:), V(:,:), Vt(:,:), D(:) allocate(S(m,m)) call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) !print *, ' overlap bef SVD: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo ! --- allocate(U(m,m), Vt(m,m), D(m)) call svd(S, m, U, m, D, Vt, m, m, m) deallocate(S) threshold = 1.d-6 num_linear_dependencies = 0 do i = 1, m if(abs(D(i)) <= threshold) then D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo if(num_linear_dependencies > 0) then write(*,*) ' linear dependencies = ', num_linear_dependencies write(*,*) ' m = ', m stop endif allocate(V(m,m)) do i = 1, m do j = 1, m V(j,i) = Vt(i,j) enddo enddo deallocate(Vt) ! --- ! R <-- R x V x D^{-0.5} ! L <-- L x U x D^{-0.5} do i = 1, m do j = 1, m V(j,i) = V(j,i) * D(i) U(j,i) = U(j,i) * D(i) enddo enddo allocate(tmp(n,m)) tmp(:,:) = R(:,:) call dgemm( 'N', 'N', n, m, m, 1.d0 & , tmp, size(tmp, 1), V, size(V, 1) & , 0.d0, R, size(R, 1)) tmp(:,:) = L(:,:) call dgemm( 'N', 'N', n, m, m, 1.d0 & , tmp, size(tmp, 1), U, size(U, 1) & , 0.d0, L, size(L, 1)) deallocate(tmp, U, V, D) end ! --- subroutine impose_biorthog_inverse(n, m, L, R) implicit none integer, intent(in) :: n, m double precision, intent(inout) :: L(n,m) double precision, intent(in) :: R(n,m) double precision, allocatable :: Lt(:,:),S(:,:) integer :: i,j allocate(Lt(m,n)) allocate(S(m,m)) call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) print *, ' overlap bef SVD: ' do i = 1, m write(*, '(1000(F16.10,X))') S(i,:) enddo call get_pseudo_inverse(R,n,n,m,Lt,m,1.d-6) do i = 1, m do j = 1, n L(j,i) = Lt(i,j) enddo enddo ! --- call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), R, size(R, 1) & , 0.d0, S, size(S, 1) ) print *, ' overlap aft SVD: ' do i = 1, m write(*, '(1000(F16.10,X))') S(i,:) enddo deallocate(S,Lt) end ! --- subroutine impose_weighted_biorthog_qr(m, n, thr_d, thr_nd, Vl, W, Vr) implicit none integer, intent(in) :: m, n double precision, intent(in) :: thr_d, thr_nd double precision, intent(inout) :: Vl(m,n), W(m,m), Vr(m,n) integer :: i, j integer :: LWORK, INFO double precision :: accu_nd, accu_d double precision, allocatable :: TAU(:), WORK(:) double precision, allocatable :: S(:,:), R(:,:), tmp(:,:), Stmp(:,:) call check_weighted_biorthog_binormalize(m, n, Vl, W, Vr, thr_d, thr_nd, .false.) ! --- allocate(Stmp(n,m), S(n,n)) call dgemm( 'T', 'N', n, m, m, 1.d0 & , Vl, size(Vl, 1), W, size(W, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'N', 'N', n, n, m, 1.d0 & , Stmp, size(Stmp, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) accu_nd = 0.d0 accu_d = 0.d0 do i = 1, n do j = 1, n if(i==j) then accu_d += S(j,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n))/dble(n) .lt. thr_d)) then print *, ' bi-orthogonal vectors without QR !' deallocate(S) return endif ! ------------------------------------------------------------------------------------- ! QR factorization of S: S = Q x R print *, ' apply QR decomposition ...' allocate( TAU(n), WORK(1) ) LWORK = -1 call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dgeqrf failed !!', INFO stop endif ! save the upper triangular R allocate( R(n,n) ) R(:,:) = S(:,:) ! get Q LWORK = -1 call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif LWORK = max(n, int(WORK(1))) deallocate(WORK) allocate( WORK(LWORK) ) call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO) if(INFO .ne. 0) then print*,'dorgqr failed !!', INFO stop endif deallocate( WORK, TAU ) ! ! ------------------------------------------------------------------------------------- ! --- ! ------------------------------------------------------------------------------------- ! get bi-orhtog left & right vectors: ! Vr' = Vr x inv(R) ! Vl' = inv(Q) x Vl = Q.T x Vl ! Q.T x Vl, where Q = S allocate( tmp(n,m) ) call dgemm( 'T', 'T', n, m, n, 1.d0 & , S, size(S, 1), Vl, size(Vl, 1) & , 0.d0, tmp, size(tmp, 1) ) do i = 1, n do j = 1, m Vl(j,i) = tmp(i,j) enddo enddo deallocate(tmp) ! --- ! inv(R) !print *, ' inversing upper triangular matrix ...' call dtrtri("U", "N", n, R, n, INFO) if(INFO .ne. 0) then print*,'dtrtri failed !!', INFO stop endif !print *, ' inversing upper triangular matrix OK' do i = 1, n-1 do j = i+1, n R(j,i) = 0.d0 enddo enddo !print *, ' inv(R):' !do i = 1, n ! write(*, '(1000(F16.10,X))') R(i,:) !enddo ! Vr x inv(R) allocate( tmp(m,n) ) call dgemm( 'N', 'N', m, n, n, 1.d0 & , Vr, size(Vr, 1), R, size(R, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate( R ) do i = 1, n do j = 1, m Vr(j,i) = tmp(j,i) enddo enddo deallocate(tmp) call check_weighted_biorthog_binormalize(m, n, Vl, W, Vr, thr_d, thr_nd, .false.) return end ! --- subroutine check_weighted_biorthog_binormalize(n, m, Vl, W, Vr, thr_d, thr_nd, stop_ifnot) implicit none integer, intent(in) :: n, m logical, intent(in) :: stop_ifnot double precision, intent(in) :: thr_d, thr_nd double precision, intent(inout) :: Vl(n,m), W(n,n), Vr(n,m) integer :: i, j double precision :: accu_d, accu_nd, s_tmp double precision, allocatable :: S(:,:), Stmp(:,:) print *, ' check weighted bi-orthonormality' ! --- allocate(Stmp(m,n), S(m,m)) call dgemm( 'T', 'N', m, n, n, 1.d0 & , Vl, size(Vl, 1), W, size(W, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , Stmp, size(Stmp, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' overlap matrix before:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo ! S(i,i) = -1 do i = 1, m if( (S(i,i) + 1.d0) .lt. thr_d ) then do j = 1, n Vl(j,i) = -1.d0 * Vl(j,i) enddo S(i,i) = 1.d0 endif enddo accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + S(i,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) / dble(m) print*, ' diag acc: ', accu_d print*, ' nondiag acc: ', accu_nd ! --- if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d) ) then do i = 1, m print *, i, S(i,i) if(dabs(S(i,i) - 1.d0) .gt. thr_d) then s_tmp = 1.d0 / dsqrt(S(i,i)) do j = 1, n Vl(j,i) = Vl(j,i) * s_tmp Vr(j,i) = Vr(j,i) * s_tmp enddo endif enddo endif ! --- allocate(Stmp(m,n)) call dgemm( 'T', 'N', m, n, n, 1.d0 & , Vl, size(Vl, 1), W, size(W, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'N', 'N', m, m, n, 1.d0 & , Stmp, size(Stmp, 1), Vr, size(Vr, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' overlap matrix after:' !do i = 1, m ! write(*,'(1000(F16.10,X))') S(i,:) !enddo accu_d = 0.d0 accu_nd = 0.d0 do i = 1, m do j = 1, m if(i==j) then accu_d = accu_d + S(i,i) else accu_nd = accu_nd + S(j,i) * S(j,i) endif enddo enddo accu_nd = dsqrt(accu_nd) / dble(m) print *, ' diag acc: ', accu_d print *, ' nondiag acc: ', accu_nd deallocate(S) ! --- if( stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) ) then print *, accu_nd, thr_nd print *, dabs(accu_d-dble(m))/dble(m), thr_d print *, ' weighted biorthog_binormalize failed !' stop endif end ! --- subroutine impose_weighted_biorthog_svd(n, m, overlap, L, R) implicit none integer, intent(in) :: n, m double precision, intent(in) :: overlap(n,n) double precision, intent(inout) :: L(n,m), R(n,m) integer :: i, j, num_linear_dependencies double precision :: threshold double precision, allocatable :: S(:,:), tmp(:,:),Stmp(:,:) double precision, allocatable :: U(:,:), V(:,:), Vt(:,:), D(:) ! --- allocate(S(m,m),Stmp(n,m)) ! S = C.T x overlap x C call dgemm( 'N', 'N', n, m, n, 1.d0 & , overlap, size(overlap, 1), R, size(R, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), Stmp, size(Stmp, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' overlap bef SVD: ' !do i = 1, m ! write(*, '(1000(F25.16,X))') S(i,:) !enddo ! --- allocate(U(m,m), Vt(m,m), D(m)) call svd(S, m, U, m, D, Vt, m, m, m) deallocate(S) threshold = 1.d-6 num_linear_dependencies = 0 do i = 1, m if(abs(D(i)) <= threshold) then D(i) = 0.d0 num_linear_dependencies += 1 else ASSERT (D(i) > 0.d0) D(i) = 1.d0 / dsqrt(D(i)) endif enddo if(num_linear_dependencies > 0) then write(*,*) ' linear dependencies = ', num_linear_dependencies write(*,*) ' m = ', m stop endif allocate(V(m,m)) do i = 1, m do j = 1, m V(j,i) = Vt(i,j) enddo enddo deallocate(Vt) ! --- allocate(tmp(n,m)) ! tmp <-- R x V call dgemm( 'N', 'N', n, m, m, 1.d0 & , R, size(R, 1), V, size(V, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(V) ! R <-- tmp x sigma^-0.5 do j = 1, m do i = 1, n R(i,j) = tmp(i,j) * D(j) enddo enddo ! tmp <-- L x U call dgemm( 'N', 'N', n, m, m, 1.d0 & , L, size(L, 1), U, size(U, 1) & , 0.d0, tmp, size(tmp, 1) ) deallocate(U) ! L <-- tmp x sigma^-0.5 do j = 1, m do i = 1, n L(i,j) = tmp(i,j) * D(j) enddo enddo deallocate(D, tmp) ! --- allocate(S(m,m),Stmp(n,m)) ! S = C.T x overlap x C call dgemm( 'N', 'N', n, m, n, 1.d0 & , overlap, size(overlap, 1), R, size(R, 1) & , 0.d0, Stmp, size(Stmp, 1) ) call dgemm( 'T', 'N', m, m, n, 1.d0 & , L, size(L, 1), Stmp, size(Stmp, 1) & , 0.d0, S, size(S, 1) ) deallocate(Stmp) !print *, ' overlap aft SVD with overlap: ' !do i = 1, m ! write(*, '(1000(F16.10,X))') S(i,:) !enddo deallocate(S) return end ! ---