! --- complex*16 function overlap_cgaussian_x(A_center, B_center, alpha, beta, power_A, power_B, dim) BEGIN_DOC ! ! \int_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha (x-A_x)^2) exp(- beta(x-B_X)^2) dx ! with complex arguments ! END_DOC implicit none include 'constants.include.F' integer, intent(in) :: dim, power_A, power_B complex*16, intent(in) :: A_center, B_center, alpha, beta integer :: i, iorder_p double precision :: fact_p_mod complex*16 :: P_new(0:max_dim), P_center, fact_p, p, inv_sq_p complex*16 :: Fc_integral call give_explicit_cpoly_and_cgaussian_x( P_new, P_center, p, fact_p, iorder_p & , alpha, beta, power_A, power_B, A_center, B_center, dim) fact_p_mod = dsqrt(real(fact_p)*real(fact_p) + aimag(fact_p)*aimag(fact_p)) if(fact_p_mod .lt. 1.d-14) then overlap_cgaussian_x = (0.d0, 0.d0) return endif inv_sq_p = (1.d0, 0.d0) / zsqrt(p) overlap_cgaussian_x = (0.d0, 0.d0) do i = 0, iorder_p overlap_cgaussian_x += P_new(i) * Fc_integral(i, inv_sq_p) enddo overlap_cgaussian_x *= fact_p end function overlap_cgaussian_x ! --- subroutine overlap_cgaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B & , overlap_x, overlap_y, overlap_z, overlap, dim ) BEGIN_DOC ! ! S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx ! S = S_x S_y S_z ! for complex arguments ! END_DOC implicit none include 'constants.include.F' integer, intent(in) :: dim, power_A(3), power_B(3) complex*16, intent(in) :: A_center(3), B_center(3), alpha, beta complex*16, intent(out) :: overlap_x, overlap_y, overlap_z, overlap integer :: i, nmax, iorder_p(3) double precision :: fact_p_mod complex*16 :: P_new(0:max_dim,3), P_center(3), fact_p, p, inv_sq_p complex*16 :: F_integral_tab(0:max_dim) complex*16 :: Fc_integral call give_explicit_cpoly_and_cgaussian(P_new, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, B_center, dim) fact_p_mod = dsqrt(real(fact_p)*real(fact_p) + aimag(fact_p)*aimag(fact_p)) if(fact_p_mod .lt. 1.d-14) then overlap_x = (1.d-10, 0.d0) overlap_y = (1.d-10, 0.d0) overlap_z = (1.d-10, 0.d0) overlap = (1.d-10, 0.d0) return endif nmax = maxval(iorder_p) inv_sq_p = (1.d0, 0.d0) / zsqrt(p) do i = 0, nmax F_integral_tab(i) = Fc_integral(i, inv_sq_p) enddo overlap_x = P_new(0,1) * F_integral_tab(0) overlap_y = P_new(0,2) * F_integral_tab(0) overlap_z = P_new(0,3) * F_integral_tab(0) do i = 1, iorder_p(1) overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i) enddo call cgaussian_product_x(alpha, A_center(1), beta, B_center(1), fact_p, p, P_center(1)) overlap_x *= fact_p do i = 1, iorder_p(2) overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i) enddo call cgaussian_product_x(alpha, A_center(2), beta, B_center(2), fact_p, p, P_center(2)) overlap_y *= fact_p do i = 1, iorder_p(3) overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i) enddo call cgaussian_product_x(alpha, A_center(3), beta, B_center(3), fact_p, p, P_center(3)) overlap_z *= fact_p overlap = overlap_x * overlap_y * overlap_z end subroutine overlap_cgaussian_xyz ! ---